
Real-Time Workshop® 7
Getting Started Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop® Getting Started Guide

© COPYRIGHT 2002–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 First printing New for Version 5.0 (Release 13)
June 2004 Second printing Revised for Version 6.0 (Release 14)
October 2004 Third printing Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Fourth printing Revised for Version 6.3 (Release 14SP3)
March 2006 Online Only Revised for Version 6.4 (Release 2006a)
September 2006 Online Only Revised for Version 6.5 (Release 2006b)
March 2007 Fifth printing Revised for Version 6.6 (Release 2007a)
September 2007 Online Only Revised for Version 7.0 (Release 2007b)
March 2008 Sixth printing Revised for Version 7.1 (Release 2008a)

Contents

Introduction

1
Product Overview . 1-2

Introduction . 1-2
Components and Features . 1-3
Accelerating Your Development Process 1-7

Installing the Real-Time Workshop® Software 1-11
Installation Requirements . 1-11
Supported Third-Party Compilers . 1-12
Compiler Optimization Settings . 1-12
Troubleshooting Third-Party Windows® Compiler

Configurations . 1-13

Real-Time Workshop® Demos . 1-15

MathWorks Products Supported by the Real-Time
Workshop® Software . 1-16

Help and Documentation . 1-19
Prerequisites . 1-19
Online Documentation . 1-19
For Further Information . 1-20

Building an Application

2
Real-Time Workshop® Workflow . 2-2

Workflow Overview . 2-2
Mapping Application Requirements to Configuration

Options . 2-4
Adjusting Configuration Settings . 2-5
Running Model Advisor . 2-6

v

Generating Code . 2-8
Building an Executable Program . 2-8
Verifying the Executable Program . 2-9
Naming and Saving the Configuration Set 2-10
Documenting the Project . 2-11

Automatic Program Building . 2-13

Build Process . 2-15
Build Process Steps . 2-15
Model Compilation . 2-17
Code Generation . 2-17
Customized Makefile Generation . 2-18
Executable Program Generation . 2-19
Files and Directories Created by the Build Process 2-20

Working with the Real-Time Workshop®

Software

3
Demonstration Model: rtwdemo_f14 3-3

Building a Generic Real-Time Program 3-4
Tutorial Overview . 3-4
Working and Build Directories . 3-4
Setting Program Parameters . 3-5
Selecting the Target Configuration 3-8
Building and Running the Program 3-12
Contents of the Build Directory . 3-14

Data Logging . 3-16
Tutorial Overview . 3-16
Data Logging During Simulation . 3-17
Data Logging from Generated Code 3-19

Code Verification . 3-24
Tutorial Overview . 3-24
Logging Signals via Scope Blocks . 3-24
Logging Simulation Data . 3-26

vi Contents

Logging Data from the Generated Program 3-26
Comparing Numerical Results of the Simulation and the

Generated Program . 3-28

First Look at Generated Code . 3-30
Tutorial Overview . 3-30
Setting Up the Model . 3-30
Generating Code Without Buffer Optimization 3-32
Generating Code with Buffer Optimization 3-34
Further Optimization: Expression Folding 3-36
HTML Code Generation Reports . 3-38

Working with External Mode Using GRT 3-41
Tutorial Overview . 3-41
Setting Up the Model . 3-42
Building the Target Executable . 3-44
Running the External Mode Target Program 3-47
Tuning Parameters . 3-53

Generating Code for a Referenced Model 3-55
Tutorial Overview . 3-55
Creating and Configuring a Subsystem Within the vdp

Model . 3-55
Converting the Model to Use Model Referencing 3-58
Generating Model Reference Code for a GRT Target 3-62
Working with Project Directories . 3-65

Documenting a Code Generation Project 3-67
Tutorial Overview . 3-67
Generating Code for the Model . 3-68
Opening Report Generator . 3-69
Setting Report Output Options . 3-70
Specifying Models and Subsystems to Include in a

Report . 3-72
Setting Component Options . 3-72
Generating the Report . 3-73
Reviewing the Generated Report . 3-73

vii

Glossary

Index

viii Contents

1

Introduction

This guide begins with a high-level overview of Real-Time Workshop®,
describing its purpose, its components, its major features, and the ways in
which it leverages the Simulink® modeling power for developing real-time
applications on a variety of platforms. You will also find information about
installing the Real-Time Workshop software, including discussions of related
products from The MathWorks and compilers from third parties, as well as
pointers to demos and online and printable documentation. The chapter is
laid out as follows:

Product Overview (p. 1-2) What it is, and what it can do for you

Installing the Real-Time Workshop®

Software (p. 1-11)
Information on supported compilers

Real-Time Workshop® Demos
(p. 1-15)

Demonstrations that illustrate code
generation capabilities

MathWorks Products Supported by
the Real-Time Workshop® Software
(p. 1-16)

Products for which code can be
generated or which otherwise work
with the Real-Time Workshop
software

Help and Documentation (p. 1-19) Locating and using online and
printed help documents

1 Introduction

Product Overview

In this section...

“Introduction” on page 1-2

“Components and Features” on page 1-3

“Accelerating Your Development Process” on page 1-7

Introduction
The Real-Time Workshop® product is an extension of capabilities of the
Simulink® and MATLAB® products that automatically generates, packages,
and compiles source code from Simulink models to create real-time software
applications on a variety of systems. By providing a code generation
environment for rapid prototyping and deployment, the Real-Time Workshop
product is the foundation for production code generation capabilities. Along
with other tools and components from The MathWorks, the Real-Time
Workshop product provides

• Automatic code generation tailored for a variety of target platforms

• A rapid and direct path from system design to implementation

• Seamless integration with MATLAB and Simulink

• A simple graphical user interface

• An open architecture and extensible make process

1-2

Product Overview

The Real-Time Workshop process of generating source code from Simulink
models is shown in the following diagram.

�������	�
�������
�����

��	�����
���������

�������	

�����
��������
��	����

�������

������������

��������

�������	�
�������

���
����	�

�����	
�����
����

������	�
��������
������
�����

 ���	������
��������
!����
�����
�����

�����
��������
��	����
��������
��!��

"������
����������
�����
�����

�����
�����
�����

Components and Features
The principal Real-Time Workshop components and features are

• Simulink Code Generator — Automatically generates C code from your
Simulink model.

• Make process — The Real-Time Workshop user-extensible make process
lets you customize compilation and linking of generated code for your own
production or rapid prototyping target.

1-3

1 Introduction

• Simulink external mode — External mode enables communication
between Simulink and a model executing on a real-time test environment,
or in another process on the same machine. External mode lets you perform
parameter tuning, data logging, and viewing using Simulink.

• Targeting support — Using the targets bundled with the Real-Time
Workshop software, you can build systems for real-time and prototyping
environments. The generic real-time and other bundled targets provide
a framework for developing customized rapid prototyping or production
target environments. In addition to the bundled targets, the optional
Real-Time Windows Target™ and the xPC Target™ let you turn almost any
PC into a rapid prototyping target or a small to medium volume production
target. To supplement core capabilities, the optional Real-Time Workshop®

Embedded Coder™ and embedded target (Embedded IDE Link™ CC,
Embedded IDE Link MU, Embedded IDE Link TS, Embedded IDE Link
VS) products extend and tailor Real-Time Workshop code to run in a
growing suite of microprocessor environments.

• Rapid simulations — Using the Simulink® Accelerator™ software, the
S-Function target, or the Rapid Simulation target, you can accelerate
your simulations by 5 to 20 times on average. Executables built with
these targets bypass normal Simulink interpretive simulation mode. Code
generated by the Simulink Accelerator software, S-Function target, and
Rapid Simulation target is highly optimized to execute only the algorithms
used in your specific model. In addition, the code generator applies many
optimizations, such as eliminating ones and zeros in computations for
filter blocks.

• Large-scale modeling — Support for multilevel modeling (termed model
referencing) in Simulink is mirrored in the Real-Time Workshop software,
which lets you generate code incrementally for a hierarchy of independent
component models, as they evolve.

Real-Time Workshop features include

• Code generation for Simulink models

- Generates optimized, customizable code. There are several styles of
generated code, which can be classified as either embedded (production
phase) or rapid prototyping.

1-4

Product Overview

- Supports all Simulink features, including 8-, 16-, and 32-bit integers and
floating-point double and single data types.

- Provides fixed-point capabilities for scaling of integer words ranging
from 1 (unsigned) or 2 (signed) to 32 bits. Code generation is limited
by the implementation of char, short, int, and long in embedded C
compiler environments (usually 8, 16, and 32 bits, respectively). You can
choose hardware characteristics for more than 20 preconfigured target
processors by name or create your own custom processor definition.

- Generates processor-independent code. The generated code represents
your model exactly. A separate run-time interface is used to execute
this code. The Real-Time Workshop software provides several example
run-time interfaces, as well as production run-time interfaces.

- Supports single- or multitasking operating system environments, as well
as bare-board (no operating system) environments.

- Provides the flexible scripting capabilities of the Target Language
Compiler to enable you to fully customize generated code.

- Allows you to craft efficient code for S-functions (user-created blocks)
using Target Language Compiler instructions (called TLC scripts) that
automatically integrates with generated code.

• Extensive model debugging support

- External mode enables you to examine what the generated code is doing
by uploading data from your target to the graphical display elements in
your model. There is no need to use a conventional source-level debugger
to look at your generated code.

- External mode also enables you to tune the generated code via your
Simulink model. When you change a parameter value of a block in your
model, the new value is passed down to the generated code running on
your target, and the corresponding target memory location is updated.

• Integration with Simulink

- Code verification. You can generate code for your model and create a
stand-alone executable that exercises the generated code and produces a
MAT-file containing the execution results.

- Generated code contains system and block identification tags to help you
identify the block in your source model that generated a given line of

1-5

1 Introduction

code. The MATLAB command hilite_system recognizes these tags and
highlights the corresponding blocks in your model.

- Support for Simulink data objects lets you define how your signals and
block parameters interface to the external world.

• Integration with Stateflow®

- Code generation. Seamless code generation support for models that
contain Stateflow charts.

- Full support for Stateflow® Coder™ features.

• Rapid simulation

- The Real-Time Workshop software supports several ways to speed up
your simulations by creating optimized, model-specific executables.

• Target support

- Turnkey solutions for rapid prototyping substantially reduce design
cycles, allowing for fast turnaround of design iterations.

- Bundled rapid prototyping example targets provide working code you can
modify and use quickly. For a complete list of bundled targets, with their
associated system target files and template makefiles, see “Choosing and
Configuring Your Target” in the Real-Time Workshop documentation.

- The optional Real-Time Windows Target and xPC Target products for
PC-based hardware from The MathWorks enable you to turn a PC with
fast, high-quality, low-cost hardware into a rapid prototyping system.

- The Real-Time Workshop Embedded Coder add-on product provides
extensive support for tailoring generated code to special requirements
of embedded hardware, software environments, data formats, and tool
chain protocols.

- The MathWorks offers a growing set of code generation products for
embedded processors, such as Target Support Package™ IC1 and Target
Support Package FM5, which via turnkey hardware support extend the
benefits of the Real-Time Workshop and Real-Time Workshop Embedded
Coder software into production environments.

- Supports a variety of third-party hardware and tools, with extensible
device driver support.

• Extensible make process

1-6

Product Overview

- Allows for easy integration with any embedded compiler and linker.

- Provides for easy linkage with your hand-written supervisory or
supporting code.

The Real-Time Workshop Embedded Coder software, mentioned above,

• Generates ANSI® and ISO C code and executables for discrete, continuous,
or hybrid models

• Uses model blocks to incrementally generate and build code for large
applications

• Supports Simulink data dictionary features for integer, floating-point, and
fixed-point data

• Generates code for single-rate, multirate, and asynchronous models

• Supports single-tasking and multitasking operating systems and
bare-board (no operating system) environments

• Performs code optimizations that improve code execution speed

• Provides capabilities for code customization and legacy code integration

• Lets you interactively tune and monitor the generated code inside or
outside of Simulink

Accelerating Your Development Process
The MathWorks gives you the ability to simplify and accelerate most phases
of software development, and at the same time to eliminate repetitive and
error-prone tasks, including some design document preparation. These tools
lend themselves particularly well to the spiral design process shown below.

1-7

1 Introduction

�#$��%�&
"�'�&�&(�%�"#(

����)��
���
���)��
�	���	��������

 �����
*����������
*��
�������

 �������
������

�����	���*��
������

������

'�!��	+����
��	�������

���	�

'��������
���
	�����������
�������

 &�",(

-&�"$"�%�"#(

"(�&,�%�"#(

�'&�"$"�%�"#(

When you work with tools from The MathWorks, your model represents your
understanding of your system. This understanding is preserved from one
phase of modeling to the next, reducing the need to backtrack. In the event
that rework is necessary in a previous phase, it is easier to step back because
the same model and tools are used throughout.

A spiral design process allows quick iterations between phases, enabling you
to focus on design work. To do this cost-effectively, you need to use tools that
make it easy to move from one phase to another. For example, in a matter
of minutes a control system engineer or a signal processing engineer can
verify that an algorithm works on a real-world rapid prototyping system. The
spiral process lends itself naturally to parallelism in the overall development
process. You can provide early working models to validation and production

1-8

Product Overview

groups, involving them in your system development process from the start.
Once unit models are prototyped, tested, and ready, they can be packaged into
larger assemblies using Model blocks (the Simulink model referencing facility).
This helps to compress overall development time while increasing quality.

Simulink facilitates the first three phases described in the above figure. You
can build applications using built-in blocks from the Simulink and Stateflow
libraries, incorporate specialized blocks from the Aerospace Blockset™,
Communications Blockset™, Signal Processing Blockset™, and other
MathWorks™ blocksets, and develop your own blocks by writing S-functions.

The Real-Time Workshop software (optionally extended by Real-Time
Workshop Embedded Coder, Real-Time Windows Target, and xPC Target)
completes the spiral process. It closes the rapid prototyping loop by generating
and optimizing code for given tasks and production environments.

The figure below illustrates where products from The MathWorks, including
theReal-Time Workshop product, help you in your development process.

"�������*�
	�������
���
��	�������"�������*�
������ .���������
��	�������

%��������/
����������
������

�����
������
*����������
�����
��	�������

����������	
��*����	���
�������

�����
'���������

������
0������	�1
�����	
�������
���
������

&	!�����
�����
0�����	
�
�������1

 �������
�����	

&	!�����
�����
0�����	
�
�������1

����)��
����������

&	!�����
�����
0�����	
�
�������1

&	!�����
����

0'��������
����1

�%��%�
���

����!�2��

��	�����
��������)
���������

�������	�
�������

�����	��������
	��������
���
���	���
������/
������
�������

 �����
�����

����)��
����
�������

&	
!�����
�����

0�����	

�
�������1

1-9

1 Introduction

Early in the design process, you use the MATLAB and Simulink software
to help you formulate your objectives, problems, and constraints to create
your initial design. The Real-Time Workshop software speeds up models
by enabling high-speed Simulink Accelerator simulations and by model
referencing, which includes models in other models as blocks.

After you have a functional model, you might need to tune your model’s
parameters. You can do this quickly using the Real-Time Workshop Rapid
Simulation Target for Monte Carlo and other batch-oriented simulations
(varying coefficients over many simulations).

Once you have tuned your model, you can move into system development
testing by exercising your model on a rapid prototyping system, such as the
Real-Time Windows Target or xPC Target software. With a rapid prototyping
target, you connect your model to your physical system. This lets you locate
design flaws and modeling errors quickly.

After you create your prototype system and verify its outputs, you can use
the Real-Time Workshop Embedded Coder software to deploy generated
code on your custom target. The signal monitoring and parameter tuning
capabilities enable you to easily integrate the embedded code into a production
environment equipped with debugging and upgrade capabilities. See the
Real-Time Workshop Embedded Coder documentation for an overview of this
process. First, however, see “Real-Time Workshop® Workflow” on page 2-2 for
a process view of using the Real-Time Workshop software.

For a more detailed discussion on applications of the Real-Time Workshop
product and how and when you might use it during system development, see
“Introduction to Real-Time Workshop Technology” in the Real-Time Workshop
documentation.

1-10

Installing the Real-Time Workshop® Software

Installing the Real-Time Workshop® Software

In this section...

“Installation Requirements” on page 1-11

“Supported Third-Party Compilers” on page 1-12

“Compiler Optimization Settings” on page 1-12

“Troubleshooting Third-Party Windows® Compiler Configurations” on page
1-13

Installation Requirements
Your platform-specific MATLAB® installation documentation provides all the
information you need to install the Real-Time Workshop® software.

Before installing the software, you must obtain a License File or Personal
License Password (PLP) from The MathWorks. The License File or PLP
identifies the products you are permitted to install and use.

If you customize your installation, the installer displays a dialog box that lets
you select the MATLAB products to install. You can select and install only
products for which you are licensed.

The Simulink®, Real-Time Workshop, and Real-Time Workshop® Embedded
Coder™ products each have prerequisites for proper installation and
execution, described in the following table.

Licensed Product Prerequisite Products Additional Information

Simulink MATLAB Allows installation of Simulink

Real-Time Workshop Simulink Requires LCC, Microsoft® Visual C or
Microsoft® Visual C++® Professional, or
Watcom C compiler to create MATLAB
MEX-files or other executables on your
platform

Real-Time Workshop
Embedded Coder

Real-Time Workshop —

1-11

1 Introduction

If you experience installation difficulties and have Web access, use the
resources available on the MathWorks™ Web site Support page Installation
and Licensing section at http://www.mathworks.com/support/.

Supported Third-Party Compilers
Most Real-Time Workshop targets create an executable that runs on your
workstation. When creating the executable, the Real-Time Workshop build
process must be able to access an appropriate compiler. The build process can
automatically find a compiler to use based on your default MEX compiler.

For more about third party compilers, see “Choosing and Configuring
a Compiler” in the Real-Time Workshop documentation. For details on
supported compiler versions, see

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Compiler Optimization Settings
In some very rare instances, because of compiler defects, compiler
optimizations applied to Real-Time Workshop generated code can cause the
executable program to produce incorrect results, even though the code itself is
correct.

The Real-Time Workshop build process uses the default optimization level
for each supported compiler. You can usually work around problems caused
by compiler optimizations by lowering the optimization level of the compiler
or by turning off optimizations. Refer to your compiler’s documentation for
information on how to do this.

Out-of-Environment Error Message
If you receive out-of-environment space error messages, right-click your
mouse on the program that is causing the problem (for example, dosprmpt or
autoexec.bat) and choose Properties. From there choose Memory. Set the
Initial Environment to the maximum allowed and click Apply. This should
increase the amount of environment space available.

1-12

http://www.mathworks.com
http://www.mathworks.com/support/
http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Installing the Real-Time Workshop® Software

Troubleshooting Third-Party Windows® Compiler
Configurations
This section provides compiler-specific configuration instructions. If you have
problems with Microsoft Windows® compiler configuration, first ensure that
MATLAB supports the compiler and version that you want to use. For a
complete list of supported compilers and versions, see

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

LCC
The freeware LCC C compiler is shipped with MATLAB, and is installed
with the product. If you want to use LCC to build programs generated
by the Real-Time Workshop software, use the version that is currently
shipped with the product. Information about LCC is available at
http://www.cs.virginia.edu/~lcc-win32/.

Microsoft® Visual C or Microsoft® Visual C++®

Use the MATLAB command

mex -setup

to define the environment for Visual C/C++. Note that only the Professional
version is supported.

Watcom
The Watcom C compiler is no longer available from the manufacturer.
Development of this compiler has been taken over by the Open Watcom
organization (http://www.openwatcom.org), which has released a binary
patch update (11.0c) for existing Watcom C/C++ and Fortran customers. The
Real-Time Workshop software continues to ship with Watcom-related target
configurations. However, this policy may be subject to change in the future.

Make sure that your Watcom environment variable is defined and correctly
points to the directory in which your Watcom compiler resides. To check this,
type

set WATCOM

1-13

http://www.mathworks.com/support/tech-notes/1600/1601.shtml
http://www.cs.virginia.edu/%7Elcc-win32/
http://www.openwatcom.org

1 Introduction

at the DOS prompt. Check the return from this command to see whether the
WATCOM environment variable is defined and points to the Watcom compiler.

If the WATCOM environment variable is not defined, you must define it to point
to where you installed your Watcom compiler. Launch the System control
panel, click the Advanced tab, click Environment Variables, and define
WATCOM to be the path to your compiler.

1-14

Real-Time Workshop® Demos

Real-Time Workshop® Demos
A good way to familiarize yourself with the Real-Time Workshop® code
generator is by browsing through its suite of demos, running the ones of
interest, and then inspecting code generated from these demo models. The
demos illustrate many (but not all) Real-Time Workshop features.

To access the current set of Real-Time Workshop demos, type

rtwdemos

at the MATLAB® prompt. You can also find Real-Time Workshop demos by
navigating to Real-Time Workshop, (found under Simulink) in the Demos
pane of the Help browser.

Note that many of the Real-Time Workshop demos illustrate features of the
Real-Time Workshop product, and are thus set up to generate code for the
ERT target. If MATLAB does not find a Real-Time Workshop® Embedded
Coder™ license on your system, you can still run the demos, but all code
generated defaults to the GRT target.

1-15

1 Introduction

MathWorks Products Supported by the Real-Time
Workshop® Software

Many blocksets and other MathWorks™ products can work with the
Real-Time Workshop® software. The following table lists products that the
Real-Time Workshop and Real-Time Workshop® Embedded Coder™ software
support.

Product Real-Time Workshop
Support

Real-Time Workshop
Embedded Coder Support

Aerospace Blockset™ Yes Yes

Communications Blockset™ Yes Yes

Control System Toolbox™ Yes Yes

Gauges Blockset™ Yes Yes

Fuzzy Logic Toolbox™ Yes Yes

Embedded IDE Link™ VS Yes Yes

Embedded IDE Link CC Yes Yes

Embedded IDE Link MU Yes Yes

Embedded IDE Link TS Yes Yes

MATLAB® Yes

Details: Supports Embedded
MATLAB™

Yes

Details: Supports Embedded
MATLAB

Model Predictive Control
Toolbox™

Yes Yes

Model-Based Calibration
Toolbox™

Yes Yes

Real-Time Windows Target™ Yes No

1-16

MathWorks Products Supported by the Real-Time Workshop® Software

Product Real-Time Workshop
Support

Real-Time Workshop
Embedded Coder Support

Signal Processing Blockset™ Yes

Details: “Block Data Type
Support Table” in the
Signal Processing Blockset
documentation

Yes

Details: “Block Data Type
Support Table” in the
Signal Processing Blockset
documentation

SimDriveline™ Yes Yes

SimHydraulics® Yes Yes

SimMechanics™ Yes Yes

SimPowerSystems™ Yes No

Simscape™ Yes Yes

Simulink® Yes

Details: “Simulink Block
Support” Table in the
Real-Time Workshop
documentation

Yes

Details: “Simulink Block
Support” Table in the
Real-Time Workshop
documentation

Simulink® Fixed Point™ Yes Yes

Simulink® Parameter
Estimation™

Yes Yes

Simulink® Report Generator™ Yes Yes

Simulink® Verification and
Validation™

Yes Yes

Stateflow® and Stateflow®

Coder™
Yes Yes

Target Support Package™
FM5

Yes Yes

Target Support Package IC1 Yes Yes

Target Support Package TC2 Yes Yes

Target Support Package TC6 Yes Yes

1-17

1 Introduction

Product Real-Time Workshop
Support

Real-Time Workshop
Embedded Coder Support

Video and Image Processing
Blockset™

Yes Yes

Virtual Reality Toolbox™ Yes Yes

xPC Target™ Yes Yes

xPC Target Embedded Option Yes Yes

1-18

Help and Documentation

Help and Documentation

In this section...

“Prerequisites” on page 1-19

“Online Documentation” on page 1-19

“For Further Information” on page 1-20

Prerequisites
Real-Time Workshop® software is shipped with this Getting Started guide.
Users of this book should be familiar with

• Using the Simulink® and Stateflow® software to create models/machines as
block diagrams, running such simulations in Simulink, and interpreting
output in the MATLAB® workspace

• High-level programming language concepts applied to real-time systems

While you do not need to program in C or other programming languages to
create, test, and deploy real-time systems using the Real-Time Workshop
software, successful emulation and deployment of real-time systems requires
familiarity with parameters and design constraints. The Real-Time Workshop
documentation assumes you have a basic understanding of real-time system
concepts, terminology, and environments. The documentation is available in
the following locations:

• Online at http://www.mathworks.com

• Through the MATLAB Help browser

• As PDF documents that you can view online or print

Online Documentation
Access to the online Real-Time Workshop information is through MATLAB or
from the MathWorks™ Web site at http://www.mathworks.com/support/.
Click the Documentation link.

1-19

http://www.mathworks.com
http://www.mathworks.com/support/

1 Introduction

To access the documentation with the MATLAB Help browser, use the
following procedure:

1 In the MATLAB window, click Help > Product Help, or click the ? icon on
the toolbar.

The Help browser window opens.

2 In the left pane, click the Real-Time Workshop book icon.

The Help browser displays the Real-Time Workshop roadmap page in the
right pane. Click any link there, or click the + sign to the left of the book
icon in the left pane to reveal the table of contents. When you do so, the
+ changes to a -.

For Further Information
The Real-Time Workshop User’s Guide documents, in detail, the capabilities
of the Real-Time Workshop product. For a topical overview of its contents, see
“Introduction to Real-Time Workshop Technology” in the Real-Time Workshop
documentation.

You can customize Real-Time Workshop output at the block, target, and
makefile levels. For advanced uses, you might have to prepare or modify
Target Language Compiler files, as explained in the Target Language
Compiler documentation.

1-20

2

Building an Application

This chapter expands the high-level discussion of code generation and the
build process given in Chapter 1, “Introduction”. It provides a foundation
of understanding for tutorial exercises in Chapter 3, “Working with the
Real-Time Workshop® Software”.

Real-Time Workshop® Workflow
(p. 2-2)

Explains the typical workflow for
applying the Real-Time Workshop®

software to the application
development process

Automatic Program Building
(p. 2-13)

Describes the flow of control for code
generation

Build Process (p. 2-15) Describes the sequence of events
that takes place when you click the
Build button, including the files that
the Target Language Compiler uses
and creates

2 Building an Application

Real-Time Workshop® Workflow

In this section...

“Workflow Overview” on page 2-2

“Mapping Application Requirements to Configuration Options” on page 2-4

“Adjusting Configuration Settings” on page 2-5

“Running Model Advisor” on page 2-6

“Generating Code” on page 2-8

“Building an Executable Program” on page 2-8

“Verifying the Executable Program” on page 2-9

“Naming and Saving the Configuration Set” on page 2-10

“Documenting the Project” on page 2-11

Workflow Overview
The typical workflow for applying the Real-Time Workshop® software to the
application development process involves the following steps:

1 Map your application requirements to available configuration options.

2 Adjust configuration options as necessary.

3 Run the Model Advisor tool.

4 If necessary, tune configuration options based on the Model Advisor report.

5 Generate code for your model.

6 Repeat steps 2 to 5 if necessary.

7 Build an executable program image.

8 Verify that the generated program produces results that are equivalent
to those of your model simulation.

9 Save the configuration, and alternative ones with the model.

2-2

Real-Time Workshop® Workflow

10 Use Simulink® Report Generator™ to automatically document the project.

The following figure shows these steps in a flow diagram. Sections following
the figure discuss the steps in more detail.

���
%����������
��3���	����
��
������������
#������

%�4���
������������
��������

���
�����
%�*���

,������
����

�����
&2�����!��
'���	

-����
&2�����!��
'���	

(�	�
���
��*�
������������
���

 ���	���
'�4���

������������
��3����
������5

����
#65

�������
�����
��	�������5

 ���

7��

(�

7��

(�

(�

7��

2-3

2 Building an Application

Mapping Application Requirements to Configuration
Options
The first step in applying the Real-Time Workshop software to the application
development process is to consider how your application requirements,
particularly with respect to debugging, traceability, efficiency, and safety, map
to code generation options available through the Simulink® Configuration
Parameters dialog box. The following screen display shows the Real-Time
Workshop pane of the Configuration Parameters dialog box.

Parameters that you set in the various panes of the Configuration Parameters
dialog box affect the behavior of a model in simulation and the code generated
for the model. The Real-Time Workshop software automatically adjusts the
available configuration parameters and their default settings based on your
target selection. For example, the preceding dialog box display shows default
settings for the generic real-time (GRT) target. However, you should become
familiar with the various parameters and be prepared to adjust settings to
optimize a configuration for your application.

As you review the parameters, consider questions such as the following:

• What settings will help you debug your application?

• What is the highest priority for your application — traceability, efficiency,
extra safety precaution, or some other criterion?

2-4

Real-Time Workshop® Workflow

• What is the second highest priority?

• Can the priority at the start of the project differ from the priority required
for the end? What tradeoffs can be made?

Once you have answered these questions, review “Recommended Settings
Summary”, which summarizes the impact of each configuration option on
debugging, traceability, efficiency, and safety precautions, and indicates the
default (factory) configuration settings for the GRT target. For additional
details, click the links in the Configuration Parameter column.

Note If you use a Real-Time Workshop® Embedded Coder™ target, a specific
embedded target, a Stateflow® target, or fixed-point blocks, you need to
consider the mapping of many other configuration parameters. For details,
see the Real-Time Workshop Embedded Coder documentation and any other
documentation specific to your target environment.

Adjusting Configuration Settings
Once you have mapped your application requirements to appropriate
configuration parameter settings, adjust the settings accordingly. Using
the Default column in “Mapping Application Requirements to the Solver
Pane”, identify the configuration parameters you need to modify. Then, open
the Configuration Parameters dialog box or Model Explorer and make the
necessary adjustments.

Tutorials in Chapter 3, “Working with the Real-Time Workshop® Software”
guide you through exercises that modify configuration parameter settings.
For details on the configuration parameters that pertain to code generation,
see “Code Generation and the Build Process” in the Real-Time Workshop
documentation.

Note In addition to using the Configuration Parameters dialog box, you can
use get_param and set_param to individually access most configuration
parameters both interactively and in scripts. The configuration parameters
you can get and set are listed in the “Parameter Reference” in the Real-Time
Workshop documentation.

2-5

2 Building an Application

Running Model Advisor
Before you generate code, it is good practice to run the Model Advisor. Based
on a list of options you select, this tool analyzes your model and its parameter
settings, and generates a report that lists findings with advice on how to
correct and improve the model and its configuration.

One way of starting the Model Advisor is to select Tools > Model Advisor in
your model window. A new window appears listing specific diagnostics you
can selectively enable or disable. Some examples of the diagnostics follow:

• Identify blocks that generate expensive saturation and rounding code

• Check optimization settings

• Identify questionable software environment specifications

2-6

Real-Time Workshop® Workflow

Although you can use the Model Advisor to improve model simulation, it
is particularly useful for identifying aspects of your model that limit code
efficiency or impede deployment of production code. The following figure
shows the Model Advisor.

2-7

2 Building an Application

For more information on using the Model Advisor, see “Using the Model
Advisor” in the Real-Time Workshop documentation.

Generating Code
After fine-tuning your model and its parameter settings, you are ready to
generate code. Typically, the first time through the process of applying The
Real-Time Workshop software for an application, you want to generate code
without going on to compile and link it into an executable program. Some
reasons for doing this include the following:

• You want to inspect the generated code. Is the Real-Time Workshop code
generator creating what you expect?

• You need to integrate custom handwritten code.

• You want to experiment with configuration option settings.

You specify code generation only by selecting the Generate code only
check box available on the Real-Time Workshop pane of the Configuration
Parameters dialog box (thus changing the label of the Build button to
Generate code). The Real-Time Workshop code generator responds by
analyzing the block diagram that represents your model, generating C code,
and placing the resulting files in a build directory within your current
working directory.

After generating the code, inspect it. Is it what you expected? If not,
determine what model and configuration changes you need to make, rerun
the Model Advisor, and regenerate the code. When you are satisfied with the
generated code, build an executable program image, as explained in “Building
an Executable Program” on page 2-8.

For a more detailed discussion of the code generation process, see “Automatic
Program Building” on page 2-13 and “Build Process” on page 2-15. For details
on the Generate code only option, see “Generating Code Only” in the
Real-Time Workshop documentation.

Building an Executable Program
When you are satisfied with the code generated for your model, build an
executable program image. If it is currently selected, you need to clear the

2-8

Real-Time Workshop® Workflow

Generate code only option on the Real-Time Workshop pane of the
Configuration Parameters dialog box. This changes the label of the Generate
code button back to Build.

One way of initiating a build is to click the Build button. The Real-Time
Workshop code generator responds by

1 Generating the C code, as explained in “Generating Code” on page 2-8.

2 Creating a customized makefile based on a template makefile for your
target of choice and placing the makefile in the build directory.

3 Instructing your system’s make utility to use the generated makefile to
compile the generated source code, link object files and libraries, and
generate an executable program file called model (UNIX®) or model.exe
(Microsoft® Windows®). The executable image resides in your working
directory.

For a more detailed discussion of the build process, see “Automatic Program
Building” on page 2-13 and “Build Process” on page 2-15.

Verifying the Executable Program
Once you have an executable image, run the image and compare the results to
the results of your model’s simulation. You can do this by

1 Logging output data produced by simulation runs

2 Logging output data produced by executable program runs

3 Comparing the results of the simulation and executable program runs

Does the output match? Are you able to explain any differences? Do you need
to eliminate any differences? At this point, it might be necessary to revisit
and possibly fine-tune your block and configuration parameter settings.

For an example, see “Code Verification” on page 3-24.

2-9

2 Building an Application

Naming and Saving the Configuration Set
When you close a model, you should save it to preserve your configuration
settings (unless you regard your recent changes as dispensable). If you want
to maintain several alternative configurations for a model (e.g., GRT and
Rapid Simulation targets, inline parameters on/off, different solvers, etc.), you
can set up a configuration set for each set of configuration parameters and
give it an identifying name. You can do this easily in Model Explorer.

To name and save a configuration,

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click the Configuration (active) node under the model name.

The Configuration Parameters dialog box appears in the right pane.

4 In the Configuration Parameters pane, type a name you want to give
the current configuration in the Name field.

5 Click Apply. The name of the active configuration in the Model
Hierarchy pane changes to the name you typed.

6 Save the model.

Adding and Copying Configuration Sets
You can save the model with more than one configuration so that you
can instantly reconfigure it at a later time. To do this, copy the active
configuration to a new one, or add a new one, then modify and name the
new configuration, as follows:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

2-10

Real-Time Workshop® Workflow

3 To add a new configuration set, while the model is selected in the Model
Hierarchy pane, select Configuration Set from the Add menu, or click
the yellow gear icon on the toolbar:

A new configuration set named Configuration appears in the Model
Hierarchy pane.

4 To copy an existing configuration set, right-click its name in the Model
Hierarchy pane and drag it to the + sign in front of the model name.

A new configuration set with a numeral (e.g., 1) appended to its name
appears lower in the Model Hierarchy pane.

5 If desired, rename the new configuration by right-clicking it, selecting
Properties, and typing the new name in the Name field on the
Configuration Parameters dialog box that appears. Then click the Apply
button.

6 Make the new configuration the active one by right-clicking it in the Model
Hierarchy pane and selecting Activate from the context menu.

The content of the Is Active field in the right pane changes from no to yes.

7 Save the model.

Documenting the Project
Consider documenting the design and implementation details of your project
to facilitate

• Project verification and validation

• Collaboration with other individuals or teams, particularly if dependencies
exist

• Archiving the project for future reference

One way of documenting a Real-Time Workshop code generation project
is to use the Simulink Report Generator software. You can generate a

2-11

2 Building an Application

comprehensive Rich Text Format (RTF), Extensible Markup Language (XML),
or Hypertext Markup Language (HTML) report that includes the following
information:

• Model name and version

• Real-Time Workshop product version

• Date and time the code generator created the code

• List of generated source and header (include) files

• Optimization and Real-Time Workshop target selection and build process
configuration settings

• Mapping of subsystem numbers to subsystem labels

• Listings of generated and custom code for the model

To get started with generating a code generation report, see the demo
rtwdemo_codegenrpt and tutorial “Documenting a Code Generation Project”
on page 3-67. For details on using the Report Generator, see the Simulink
Report Generator User’s Guide.

2-12

Automatic Program Building

Automatic Program Building
The Real-Time Workshop® software builds programs automatically for
real-time applications in a variety of host environments. Using the make
utility, the Real-Time Workshop software controls how it compiles and links
the generated source code.

The following figure illustrates the complete process. The box labeled
“Automated build process” highlights portions of the process that the
Real-Time Workshop software executes.

��	�����
	����

������������
���
'��	����

8�����*������
	����
���
��	�����
	�������

7��
��	�����
��������

���	���	��

%���	����
!����
������

&2�����!��
�
����	

,������
����

,������
��������

������	
��

����������������

�����	
��������

��������

��������
'���	

�����
����

�������
�������
�����������	���

2-13

2 Building an Application

The M-file specified by the Make command field in the Build process
section of the Real-Time Workshop pane of the Configuration Parameters
dialog box controls an internal portion of the Real-Time Workshop build
process. By default, the name of the M-file command is make_rtw; the
Real-Time Workshop build process invokes this M-file for most targets. Any
options specified in this field will be passed into the makefile-based build
process. In some cases, targets will customize the make_rtw command.
However, the arguments used by the function must be preserved.

Although the command may work for a stand-alone model, use of the
make_rtw command at the command line can be error prone. For example, if
you have multiple models open, you need to make sure the current subsystem,
found by entering gcs in the MATLAB® command window, contains the model
you want to build. Also, some target environments supply a Make command
in the Configuration Parameters dialog box that is not make_rtw. Finally,
models containing Model blocks do not build by using make_rtw directly.

To build (or generate code for) a model as currently configured from the
MATLAB Command Window, use one of the following rtwbuild commands,
where model is the name of the model:

rtwbuild model
rtwbuild('model')

2-14

Build Process

Build Process

In this section...

“Build Process Steps” on page 2-15

“Model Compilation” on page 2-17

“Code Generation” on page 2-17

“Customized Makefile Generation” on page 2-18

“Executable Program Generation” on page 2-19

“Files and Directories Created by the Build Process” on page 2-20

Build Process Steps
The Real-Time Workshop® software generates C code only or generates the C
code and produces an executable image, depending on the level of processing
you choose. By default, a Build button appears on the Real-Time Workshop
pane of the Configuration Parameters dialog box. This button completes
the entire build process and an executable image results. If you select the
Generate code only check box to the left of the button, the button label
changes to Generate code.

When you click the Build or Generate code button, the Real-Time Workshop
software performs the following build process. If the software detects code
generation constraints for your model, it issues warning or error messages.

1 “Model Compilation” on page 2-17 — The Real-Time Workshop software
analyzes your block diagram (and any models referenced by Model blocks)
and compiles an intermediate hierarchical representation in a file called
model.rtw.

2 “Code Generation” on page 2-17 — The Target Language Compiler reads
model.rtw, translates it to C code, and places the C file in a build directory
within your working directory.

When you click Generate code, processing stops here.

2-15

2 Building an Application

3 “Customized Makefile Generation” on page 2-18 — The Real-Time
Workshop software constructs a makefile from the appropriate target
makefile template and writes it in the build directory.

4 “Executable Program Generation” on page 2-19 — Your system’s make
utility reads the makefile to compile source code, link object files and
libraries, and generate an executable image, called model (UNIX®

platforms) or model.exe (Microsoft® Windows® platforms). The makefile
places the executable image in your working directory.

If you select Create code generation report on the Real-Time
Workshop > Report pane, a navigable summary of source files is
produced when the model is built. The report files occupy a directory
called html within the build directory. The report contents vary depending
on the target, but all reports feature links to generated source files. The
following display shows an example of an HTML code generation report for
a generic real-time (GRT) target.

For more information, see “Configuring Report Generation” in the Real-Time
Workshop documentation. You can also view an HTML report in Model
Explorer. See the last part of “Generating Code for a Referenced Model” on
page 3-55 for details.

2-16

Build Process

Details about each of the four steps in the process follow.

Model Compilation
The build process begins with the Simulink® software compiling the block
diagram. During this stage, Simulink

• Evaluates simulation and block parameters

• Propagates signal widths and sample times

• Determines the execution order of blocks within the model

• Computes work vector sizes, such as those used by S-functions. (For more
information about work vectors, see the Simulink Writing S-Functions
documentation).

When Simulink completes this processing, it compiles an intermediate
representation of the model. This intermediate description is stored in a
language-independent format in the ASCII file model.rtw. The model.rtw
file is the input to the next stage of the build process.

model.rtw files are similar in format to Simulink model (.mdl) files, but are
used only for automated code generation. For a general description of the
model.rtw file format, see the Target Language Compiler documentation.

Code Generation
The Real-Time Workshop code generator uses the Target Language Compiler
(TLC) and a supporting TLC function library to transform the intermediate
model description stored in model.rtw into target-specific code.

The target language compiled by the TLC is an interpreted programming
language designed to convert a model description to code. The TLC executes a
TLC program comprising several target files (.tlc scripts). The TLC scripts
specify how to generate code from the model, using the model.rtw file as input.

The TLC

1 Reads the model.rtw file

2 Compiles and executes commands in a system target file

2-17

2 Building an Application

The system target file is the entry point or main file. You select it from
those available on the MATLAB® path with the system target file browser
or you can type the name of any such file on your system prior to building.

3 Compiles and executes commands in block-level target files

For blocks in the Simulink model, there is a corresponding target file that
is either dynamically generated or statically provided.

Note The Real-Time Workshop software executes all user-written
S-function target files, but optionally executes block target files for
Simulink blocks.

4 Writes a source code version of the Simulink block diagram

Customized Makefile Generation
After generating the code, the Real-Time Workshop software generates a
customized makefile, model.mk. The generated makefile instructs the make
system utility to compile and link source code generated from the model, as
well as any required harness program, libraries, or user-provided modules.

The Real-Time Workshop software creates model.mk from a system template
file, system.tmf (where system stands for the selected target name). The
system template makefile is designed for your target environment. You have
the option of modifying the template makefile to specify compilers, compiler
options, and additional information used during the creation of the executable.

The Real-Time Workshop software creates the model.mk file by copying the
contents of system.tmf and expanding lexical tokens (symbolic names) that
describe your model’s configuration.

The Real-Time Workshop software provides many system template
makefiles, configured for specific target environments and development
systems. “Selecting a System Target File” in the Real-Time Workshop
documentation lists all template makefiles that are bundled with the
Real-Time Workshop software. To see an example template makefile, navigate
to matlabroot/rtw/c/grt, and open with an editor the file grt_msvc.tmf.

2-18

Build Process

You can fully customize your build process by modifying an existing template
makefile or providing your own template makefile.

Executable Program Generation
The following figure shows how the Real-Time Workshop software controls
automatic program building.

�����
�����
������

��	�����
�����

,������
����

��	�����
��������

,������
��������

�������
�������
�����������	���

�����	
��������

��������

�����
&2�����!��5

(�

7��

"�*���
����

����

During the final stage of processing, the Real-Time Workshop build process
invokes the generated makefile, model.mk, which in turn compiles and links
the generated code. On PC platforms, a batch file is created to invoke the

2-19

2 Building an Application

generated makefile. The batch file sets up the proper environment for
invoking the make utility and related compiler tools. To avoid unnecessary
recompilation of C files, the make utility performs date checking on the
dependencies between the object and C files; only out-of-date source files are
compiled. Optionally, the makefile can download the resulting executable
image to your target hardware.

This stage is optional, as illustrated by the control logic in the preceding
figure. You might choose to omit this stage, for example, if you are targeting
an embedded microcontroller or a digital signal processing (DSP) board.

To omit this stage of processing, select the Generate code only check box
on the Real-Time Workshop pane of the Configuration Parameters dialog
box. You can then cross-compile your code and download it to your target
hardware. “Interacting with the Build Process” in the Real-Time Workshop
documentation discusses the options that control whether or not the build
creates an executable image.

Files and Directories Created by the Build Process
The following sections discuss

• “Files Created During Build Process” on page 2-20

• “Directories Used During the Build Process” on page 2-25

Files Created During Build Process
This section lists model.* files created during the code generation and build
process for the GRT and GRT malloc targets when used with stand-alone
models. Additional directories and files are created to support shared
utilities and model references (see “Building Subsystems and Working with
Referenced Models” in the Real-Time Workshop documentation).

The build process derives many of the files from the model.mdl file you create
with Simulink. You can think of the model.mdl file as a very high-level
programming language source file.

2-20

Build Process

Note Files generated by the Real-Time Workshop® Embedded Coder™ build
process are packaged slightly differently. Depending on model architectures
and code generation options, the Real-Time Workshop build process might
generate other files.

Descriptions of the principal generated files follow. Note that these
descriptions use the generic term model for the model name:

• model.rtw

An ASCII file, representing the compiled model, generated by the
Real-Time Workshop build process. This file is analogous to the object
file created from a high-level language source program. By default, the
Real-Time Workshop build process deletes this file when the build process
is complete. However, you can choose to retain the file for inspection.

• model.c

C source code that corresponds to model.mdl and is generated by the
Target Language Compiler. This file contains

- Include files model.h and model_private.h

- All data except data placed in model_data.c

- Model-specific scheduler code

- Model-specific solver code

- Model registration code

- Algorithm code

- Optional GRT wrapper functions

• model.h

Defines model data structures and a public interface to the model entry
points and data structures. Also provides an interface to the real-time
model data structure (model_rtM) via access macros. model.h is included
by subsystem .c files in the model. It includes

- Exported Simulink data symbols

- Exported Stateflow® machine parented data

2-21

2 Building an Application

- Model data structures, including rtM

- Model entry point functions

• model_private.h

Contains local define constants and local data required by the model and
subsystems. This file is included by the generated source files in the model.
You might need to include model_private.h when interfacing legacy
hand-written code to a model. See “Header Dependencies When Interfacing
Legacy/Custom Code with Generated Code” in the Real-Time Workshop
documentation for more information. This header file contains

- Imported Simulink data symbols

- Imported Stateflow machine parented data

- Stateflow entry points

- Real-Time Workshop details (various macros, enums, and so forth that
are private to the code)

• model_types.h

Provides forward declarations for the real-time model data structure
and the parameters data structure. These might be needed by function
declarations of reusable functions. model_types.h is included by all the
generated header files in the model.

• model_data.c

A conditionally generated C source code file containing declarations for
the parameters data structure and the constant block I/O data structure,
and any zero representations for structure data types that are used in the
model. If these data structures are not used in the model, model_data.c is
not generated. Note that these structures are declared extern in model.h.
When present, this file contains

- Constant block I/O parameters

- Include files model.h and model_private.h

- Definitions for the zero representations for any user-defined structure
data types used by the model

- Constant parameters

2-22

Build Process

• model.exe (Microsoft Windows platforms) or model (UNIX platforms),
generated in the current directory, not in the build directory

Executable program file created under control of the make utility by your
development system (unless you have explicitly specified that Real-Time
Workshop generate code only and skip the rest of the build process)

• model.mk

Customized makefile generated by the Real-Time Workshop build process.
This file builds an executable program file.

• rtmodel.h

Contains #include directives required by static main program modules
such as grt_main.c and grt_malloc_main.c. Since these modules are
not created at code generation time, they include rt_model.h to access
model-specific data structures and entry points. If you create your own
main program module, take care to include rtmodel.h.

• rtwtypes.h

For GRT targets, a header file that includes simstruc_types.h, which, in
turn, includes tmwtypes.h. For Real-Time Workshop Embedded Coder
ERT targets, rtwtypes.h itself provides the necessary defines, enums,
and so on, instead of including tmwtypes.h and simstruc_types.h. The
rtwtypes.h file generated for ERT is an optimized (reduced) file based
on the settings provided with the model that is being built. See “Header
Dependencies When Interfacing Legacy/Custom Code with Generated
Code” in the Real-Time Workshop documentation for more information.

• rt_nonfinite.c

C source file that declares and initializes global nonfinite values for inf,
minus inf, and nan. Nonfinite comparison functions are also provided. This
file is always generated for GRT-based targets and optionally generated
for other targets.

• rt_nonfinite.h

C header file that defines extern references to nonfinite variables and
functions. This file is always generated for GRT-based targets and
optionally generated for other targets.

• rtw_proj.tmw

2-23

2 Building an Application

Real-Time Workshop file generated for the make utility to use to determine
when to rebuild objects when the name of the current Real-Time Workshop
project changes

• model.bat

Windows batch file used to set up the appropriate compiler environment
and invoke the make command

• modelsources.txt

List of additional sources that should be included in the compilation.

Optional files:

• model_targ_data_map.m

M-file used by external mode to initialize the external mode connection

• model_dt.h

C header file used for supporting external mode. Declares structures that
contain data type and data type transition information for generated model
data structures.

• subsystem.c

C source code for each noninlined nonvirtual subsystem or copy thereof
when the subsystem is configured to place code in a separate file

• subsystem.h

C header file containing exported symbols for noninlined nonvirtual
subsystems. Analogous to model.h.

• model_capi.h

An interface header file between the model source code and the generated C
API. See “C-API for Interfacing with Signals and Parameters” in Real-Time
Workshop User’s Guide for more information.

• model_capi.c

C source file that contains data structures that describe the model’s signals
and parameters without using external mode. See “C-API for Interfacing
with Signals and Parameters” in Real-Time Workshop User’s Guide for
more information.

2-24

Build Process

• rt_sfcn_helper.h, rt_sfcn_helper.c

Header and source files providing functions needed by noninlined
S-functions in a model. The functions rt_CallSys, rt_enableSys, and
rt_DisableSys are used when noninlined S-functions call downstream
function-call subsystems.

In addition, when you select the Create code generation report check box,
the Real-Time Workshop software generates a set of HTML files (one for each
source file plus a model_contents.html index file) in the html subdirectory
within your build directory.

The above source files have dependency relationships, and there are
additional file dependencies that you might need to take into account. These
are described in “Generated Source Files and File Dependencies” in the
Real-Time Workshop documentation.

Directories Used During the Build Process
the Real-Time Workshop build process places output files in three directories:

• The working directory

If you choose to generate an executable program file, the Real-Time
Workshop build process writes the file model.exe (Windows) or model
(UNIX) to your working directory.

• The build directory — model_target_rtw

A subdirectory within your working directory. The build directory name
is model_target_rtw, where model is the name of the source model and
target is the selected target type (for example, grt for the generic real-time
target). The build directory stores generated source code and all other files
created during the build process (except the executable program file).

• Project directory — slprj

A subdirectory within your working directory. When models referenced
via Model blocks are built for simulation or Real-Time Workshop code
generation, files are placed in slprj. The Real-Time Workshop Embedded
Coder configuration has an option that places generated shared code in
slprj without the use of model reference. Subdirectories in slprj provide
separate places for simulation code, some Real-Time Workshop code, utility

2-25

2 Building an Application

code shared between models, and other files. Of particular importance
to Real-Time Workshop users are:

- Header files from models referenced by this model

slprj/target/model/referenced_model_includes

- Model reference Real-Time Workshop target files

slprj/target/model

- MAT-files used during code generation of model reference
Real-Time Workshop target and stand-alone code generation

slprj/target/model/tmwinternal

- Shared (fixed-point) utilities

slprj/target/_sharedutils

See “Working with Project Directories” on page 3-65 for more information
on organizing your files with respect to project directories.

The build directory always contains the generated code modules model.c,
model.h, and the generated makefile model.mk.

Depending on the target, code generation, and build options you select, the
build directory might also include

• model.rtw

• Object files (.obj or .o)

• Code modules generated from subsystems

• HTML summary reports of files generated (in the html subdirectory)

• TLC profiler report files

• Block I/O and parameter tuning information file (model_capi.c)

• C API code for parameters and signals

• Real-Time Workshop project (model.tmw) files

For additional information about using project directories, see “Project
Directory Structure for Model Reference Targets” and “Supporting Shared

2-26

Build Process

Utility Directories in the Build Process” in the Real-Time Workshop
documentation.

2-27

2 Building an Application

2-28

3

Working with the Real-Time
Workshop® Software

This chapter provides hands-on tutorials that help you get started generating
code with the Real-Time Workshop® software, as quickly as possible. It
includes the following topics:

Demonstration Model: rtwdemo_f14
(p. 3-3)

Describes the Simulink® model that
the first three tutorials use

Building a Generic Real-Time
Program (p. 3-4)

Shows how to generate C code from
a Simulink demo model and build an
executable program

Data Logging (p. 3-16) Explains how to modify the
demonstration program to save data
in a MATLAB® MAT-file for plotting

Code Verification (p. 3-24) Demonstrates how to verify a
generated program by comparing its
output to that of the original model
under simulation

First Look at Generated Code
(p. 3-30)

Examines code generated for a very
simple model, illustrating the effects
of some of Real-Time Workshop code
generation options

Working with External Mode Using
GRT (p. 3-41)

Acquaints you with the basics of
using external mode on a single
computer, and demonstrates the
value of external mode to rapid
prototyping

3 Working with the Real-Time Workshop® Software

Generating Code for a Referenced
Model (p. 3-55)

Introduces generating code for
models referenced with Model
blocks, and using Model Explorer
to browse code files

Documenting a Code Generation
Project (p. 3-67)

Explains how to use the Simulink®

Report Generator™ software to
generate a detailed report for a code
generation project

To get the maximum benefit from this book, The MathWorks recommends
that you study and work all the tutorials, in the order presented.

These tutorials assume basic familiarity with the MATLAB and Simulink
products. You should also read Chapter 2, “Building an Application”, before
proceeding.

The procedures for building, running, and testing your programs are almost
identical in UNIX® and PC environments. The discussion notes differences
where applicable.

Make sure that a MATLAB compatible C compiler is installed on your
system before proceeding with these tutorials. See “Supported Third-Party
Compilers” on page 1-12 in the Real-Time Workshop documentation for more
information on supported compilers and compiler installation.

3-2

Demonstration Model: rtwdemo_f14

Demonstration Model: rtwdemo_f14
The first three tutorials use a demonstration Simulink® model,
rtwdemo_f14.mdl, from the directory:

matlabroot/toolbox/rtw/rtwdemos/

By default, this directory is on your MATLAB® path; matlabroot is the
location of MATLAB on your system. The rtwdemo_f14 model represents
a simplified flight controller for the longitudinal motion of a Grumman
Aerospace F-14 aircraft. The figure below shows the top level of this model.

The model simulates the pilot’s stick input with a square wave having a
frequency of 0.5 radians per second and an amplitude of ± 1. The system
outputs are the aircraft angle of attack and the G forces experienced by the
pilot. The input and output signals are visually monitored by Scope blocks.

3-3

3 Working with the Real-Time Workshop® Software

Building a Generic Real-Time Program

In this section...

“Tutorial Overview” on page 3-4

“Working and Build Directories” on page 3-4

“Setting Program Parameters” on page 3-5

“Selecting the Target Configuration” on page 3-8

“Building and Running the Program” on page 3-12

“Contents of the Build Directory” on page 3-14

Tutorial Overview
This tutorial walks through the process of generating C code and building an
executable program from the demonstration model. The resulting stand-alone
program runs on your workstation, independent of external timing and events.

Working and Build Directories
It is convenient to work with a local copy of the rtwdemo_f14 model, stored in
its own directory, f14example. Set up your working directory as follows:

1 In the MATLAB® Current Directory browser, navigate to a directory where
you have write access.

2 Create the working directory from the MATLAB command line by typing:

mkdir f14example

3 Make f14example your working directory:

cd f14example

4 Open the rtwdemo_f14 model:

rtwdemo_f14

The model appears in the Simulink® window.

3-4

Building a Generic Real-Time Program

5 In the model window, choose File > Save As. Navigate to your working
directory, f14example. Save a copy of the rtwdemo_f14 model as
f14rtw.mdl.

During code generation, the Real-Time Workshop® software creates a
build directory within your working directory. The build directory name
is model_target_rtw, derived from the name of the source model and the
chosen target. The build directory stores generated source code and other files
created during the build process. You examine the build directory contents at
the end of this tutorial.

Note When a model contains Model blocks (which enable one Simulink model
to include others), special project directories are created in your working
directory to organize code for referenced models. Project directories exist
alongside of Real-Time Workshop build directories, and are always named
slprj. “Generating Code for a Referenced Model” on page 3-55 describes
navigating project directory structures in Model Explorer.

Setting Program Parameters
To generate code correctly from the f14rtw model, you must change some of
the simulation parameters. In particular, note that generic real-time (GRT)
and most other targets require that the model specify a fixed-step solver.

Note The Real-Time Workshop software Workshop can generate code for
models using variable-step solvers for rapid simulation (rsim) and S-function
targets only. A Simulink license is checked out when rsim targets execute.
See “Licensing Protocols for Simulink Solvers in RSim Executables” in the
Real-Time Workshop documentation for details.

To set parameters, use the Model Explorer as follows:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3-5

3 Working with the Real-Time Workshop® Software

3 Click Configuration (Active) in the left pane.

4 Click Solver in the center pane. The Solver pane appears at the right.

3-6

Building a Generic Real-Time Program

5 Enter the following parameter values on the Solver pane (some may
already be set):

Start Time: 0.0

Stop Time: 60

Solver options:

Type: Fixed-step
Solver: ode5 (Dormand-Prince)

Fixed step size: 0.1

Tasking mode: SingleTasking

The Solver pane with the modified parameter settings is shown below.
Note the tan background color of the controls you just changed. The color
also appears on fields that were set automatically by your choices in other
fields. Use this visual feedback to verify that what you set is what you
intended. When you apply your changes, the background color reverts
to white.

3-7

3 Working with the Real-Time Workshop® Software

6 Click Apply to register your changes.

7 Save the model. Simulation parameters persist with the model, for use in
future sessions.

Selecting the Target Configuration

Note Some of the steps in this section do not require you to make changes.
They are included to help you familiarize yourself with the Real-Time
Workshop user interface. As you step through the dialog boxes, place the
mouse pointer on any item of interest to see a tooltip describing its function.

To specify the desired target configuration, you choose a system target file, a
template makefile, and a make command.

In these tutorials (and in most applications), you do not need to specify these
parameters individually. Here, you use the ready-to-run generic real-time
target (GRT) configuration. The GRT target is designed to build a stand-alone
executable program that runs on your workstation.

To select the GRT target via the Model Explorer:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 Click Real-Time Workshop in the center pane. The Real-Time
Workshop pane appears at the right. This pane has several tabs.

5 Click the General tab to activate the pane that controls target selection.

3-8

Building a Generic Real-Time Program

6 Click the Browse button next to the System target file field. This opens
the System Target File Browser, illustrated below. The browser displays
a list of all currently available target configurations. Your available
configurations may differ. When you select a target configuration, the
Real-Time Workshop software automatically chooses the appropriate
system target file, template makefile, and make command. Their names
appear at the bottom left of the window.

Note The system target file browser lists all system target files found on
the MATLAB path. Using some of these might require additional licensed
products, such as the Real-Time Workshop® Embedded Coder™ product.

3-9

3 Working with the Real-Time Workshop® Software

7 From the list of available configurations, select Generic Real-Time
Target (as shown above) and then click OK.

The Real-Time Workshop pane displays the correct system target
file (grt.tlc), make command (make_rtw), and template makefile
(grt_default_tmf), as shown below:

3-10

Building a Generic Real-Time Program

8 Select the Debug tab of the Real-Time Workshop pane. The options
displayed here control build verbosity and debugging support, and are
common to all target configurations. Make sure that all options are set
to their defaults, as shown below.

9 Select the Symbols tab of the Real-Time Workshop pane. The options
on this pane control the look and feel of generated code. Only one option
exists for the GRT target, Maximum identifier length (the number of
characters allowed in variable and other symbol names). The default for
this option is 31, as shown below.

3-11

3 Working with the Real-Time Workshop® Software

10 Select the Comments tab of the Real-Time Workshop pane. The options
displayed here control the types of comments included in generated code.
Make sure that all options are set to their defaults, as shown below.

11 Make sure that the Generate code only check box at the bottom of the
pane is cleared.

12 Save the model.

Building and Running the Program
The Real-Time Workshop build process generates C code from the model,
and then compiles and links the generated program to create an executable
image. To build and run the program,

3-12

Building a Generic Real-Time Program

1 In the Real-Time Workshop pane, select the General tab, then click the
Build button to start the build process.

A number of messages concerning code generation and compilation appear
in the MATLAB Command Window. The initial messages are

Starting Real-Time Workshop build procedure for model:
f14rtw
Generating code into build directory: f14rtw_grt_rtw

A code generation report is displayed after the code is generated because
the Create code generation report and Launch report automatically
options in the Real-Time Workshop Report tab are selected.

The contents of many of the succeeding messages depends on your compiler
and operating system. The final message is

Successful completion of Real-Time Workshop build procedure
for model: f14rtw

The working directory now contains an executable, f14rtw.exe (Microsoft®

Windows® platforms) or f14rtw (UNIX® platforms). In addition, the
Real-Time Workshop build process has created a project directory, slprj,
a build directory, f14rtw_grt_rtw , and a report file directory, html, in
your working directory.

2 To observe the contents of the working directory after the build, type the
dir command from the Command Window.

dir
. f14rtw.exe f14rtw_grt_rtw
.. f14rtw.mdl slprj

3-13

3 Working with the Real-Time Workshop® Software

3 To run the executable from the Command Window, type

!f14rtw

The ! character passes the command that follows it to the operating system,
which runs the stand-alone f14rtw program.

The program produces one line of output in the Command Window:

starting the model

No data is output.

4 Finally, to see the files created in the build directory, type

dir f14rtw_grt_rtw

Contents of the Build Directory
The build process creates a build directory and names it model_target_rtw,
concatenating the name of the source model and the chosen target. In this
example, the build directory is named f14rtw_grt_rtw.

The build directory includes these generated files (not in this order):

File Description

f14rtw.c Standalone C code that implements the model

rt_nonfinite.c Function to initialize nonfinite types (Inf, NaN,
and -Inf)

f14rtw.h An include header file containing definitions of
parameters and state variables

f14rtw_types.h Forward declarations of data types used in the
code

f14rtw_private.h Header file containing common include
definitions

rt_nonfinite.h Imported declarations for nonfinite types

3-14

Building a Generic Real-Time Program

File Description

rtwtypes.h Static include file for Simulink simstruct data
types; some embedded targets tailor this file to
reduce overhead, but GRT does not

rtmodel.h Master header file for including generated code
in the static main program (its name never
changes, and it simply includes f14rtw.h)

f14rtw.mk Makefile generated from a template for the
GRT target

The build directory also contains other files used in the build process, such
as the object (.obj) files, a batch control file (f14rtw.bat), and a marker
file (rtw_proj.tmw). The build directory contains a subdirectory, html,
containing HTML files that report on the build process and show the code
that it generated.

3-15

3 Working with the Real-Time Workshop® Software

Data Logging

In this section...

“Tutorial Overview” on page 3-16

“Data Logging During Simulation” on page 3-17

“Data Logging from Generated Code” on page 3-19

Tutorial Overview
Real-Time Workshop® MAT-file data logging facility enables a generated
program to save system states, outputs, and simulation time at each model
execution time step. The data is written to a MAT-file, named (by default)
model.mat, where model is the name of your model. In this tutorial, data
generated by the model f14rtw.mdl is logged to the file f14rtw.mat. Refer
to “Building a Generic Real-Time Program” on page 3-4 for instructions on
setting up f14rtw.mdl in a working directory if you have not done so already.

To configure data logging, click Data Import/Export in the center pane
of the Model Explorer. The process is the same as configuring a Simulink®

model to save output to the MATLAB® workspace. For each workspace return
variable you define and enable, the Real-Time Workshop software defines
a parallel MAT-file variable. For example, if you save simulation time to
the variable tout, your generated program logs the same data to a variable
named rt_tout. You can change the prefix rt_ to a suffix (_rt), or eliminate
it entirely. You do this by selecting Real-Time Workshop in the center pane
of the Model Explorer, then clicking the Interface tab.

Note Simulink lets you log signal data from anywhere in a model via the Log
signal data option in the Signal Properties dialog box (accessed via context
menu by right-clicking signal lines). The Real-Time Workshop software
does not use this method of signal logging in generated code. To log signals
in generated code, you must either use the Data Import/Export options
described below or include To File or To Workspace blocks in your model.

In this tutorial, you modify the f14rtw model so that the generated program
saves the simulation time and system outputs to the file f14rtw.mat. Then

3-16

Data Logging

you load the data into the MATLAB workspace and plot simulation time
against one of the outputs. The f14rtw model should be open and configured
as it was at the end of the previous tutorial.

Data Logging During Simulation
To use the data logging feature:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 Click Data Import/Export in the center pane. The Data Import/Export
pane appears at the right. Its Save to workspace section lets you specify
which outport data is to be saved to the workspace and what variable
names to use for it.

5 Select the Time option. This tells Simulink to save time step data during
simulation as a variable named tout. You can enter a different name to
distinguish different simulation runs (for example using different step
sizes), but take the default for this tutorial. Selecting Time enables the
Real-Time Workshop code generator to create code that logs the simulation
time to a MAT-file.

6 Select the Output option. This tells Simulink to save time step data
during simulation as a variable named yout. Selecting Output enables
the Real-Time Workshop code generator to create code that logs the root
Output blocks (Angle of Attack and Pilot G Force) to a MAT-file.

Note The sort order of the yout array is based on the port number of the
Outport blocks, starting with 1. Angle of Attack and Pilot G Force are
logged to yout(:,1) and yout(:,2), respectively.

3-17

3 Working with the Real-Time Workshop® Software

7 If any other options are enabled, clear them. Set Decimation to 1 and
Format to Array. The figure below shows the dialog.

8 Click Apply to register your changes.

9 Save the model.

10 Open the Pilot G Force Scope block of the model, then run the model by
choosing Simulation > Start in the model window. The resulting Pilot G
Force scope display is shown below.

3-18

Data Logging

11 Verify that the simulation time and outputs have been saved to the
MATLAB workspace in MAT-files. At the MATLAB prompt, type:

whos *out

Simulink displays:

Name Size Bytes Class Attributes

tout 601x1 4808 double
yout 601x2 9616 double

12 Verify that Pilot G Force was correctly logged by plotting simulation time
versus that variable. At the MATLAB prompt, type:

plot(tout,yout(:,2))

The resulting plot is shown below.

Data Logging from Generated Code
In the second part of this tutorial, you build and run a Real-Time Workshop
executable of the f14rtw model that outputs a MAT-file containing the
simulation time and outputs you previously examined. Even though you

3-19

3 Working with the Real-Time Workshop® Software

have already generated code for the f14rtw model, you must now regenerate
that code because you have changed the model by enabling data logging. The
steps below explain this procedure.

To avoid overwriting workspace data with data from simulation runs, the
Real-Time Workshop code generator modifies identifiers for variables logged
by Simulink. You can control these modifications from the Model Explorer:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 In the center pane, click Real-Time Workshop. The Real-Time
Workshop pane appears to the right.

5 Click the Interface tab.

6 Set MAT-file variable name modifier to _rt. This adds the suffix _rt
to each variable that you selected to be logged in the first part of this
tutorial (tout, yout).

3-20

Data Logging

7 Clear the Generate code only check box, if it is currently selected. The
pane should look like this:

8 Click Apply to register your changes.

9 Save the model.

10 To generate code and build an executable, click the Build button.

11 When the build concludes, run the executable with the command:

3-21

3 Working with the Real-Time Workshop® Software

!f14rtw

12 The program now produces two message lines, indicating that the MAT-file
has been written.

** starting the model **
** created f14rtw.mat **

13 Load the MAT-file data created by the executable and look at the workspace
variables from simulation and the generated program by typing:

load f14rtw.mat
whos tout* yout*

Simulink displays:

Name Size Bytes Class Attribute

tout 601x1 4808 double
tout_rt 601x1 4808 double
yout 601x2 9616 double
yout_rt 601x2 9616 double

Note that all arrays have the same number of elements.

3-22

Data Logging

14 Observe that the variables tout_rt (time) and yout_rt (Pilot G Force
and Angle of Attack) have been loaded from the file. Plot Pilot G Force
as a function of time.

plot(tout_rt,yout_rt(:,2))

The resulting plot is identical to the plot you produced in step 10 of the
previous part of this tutorial:

3-23

3 Working with the Real-Time Workshop® Software

Code Verification

In this section...

“Tutorial Overview” on page 3-24

“Logging Signals via Scope Blocks” on page 3-24

“Logging Simulation Data” on page 3-26

“Logging Data from the Generated Program” on page 3-26

“Comparing Numerical Results of the Simulation and the Generated
Program” on page 3-28

Tutorial Overview
In this tutorial, you verify the answers computed by code generated from the
f14rtw model. You do this by capturing two sets of output data and comparing
the sets. You obtain one set by running the Simulink® model, and the other
set by executing the Real-Time Workshop® generated code.

Note To obtain a valid comparison between outputs of the model and the
generated program, you must use the same Solver options and the same
Step size for both the Simulink run and the Real-Time Workshop build
process, and the model must be configured to save simulation time, as shown
in the preceding tutorial.

Logging Signals via Scope Blocks
This example uses Scope blocks (rather than Outport blocks) to log output
data. The f14rtw model should be configured as it was at the end of the
previous tutorial, “Data Logging” on page 3-16.

To configure the Scope blocks to log data,

1 Save the model if any unsaved changes exist.

2 Clear the MATLAB® workspace to eliminate the results of previous
simulation runs. At the MATLAB prompt, type:

3-24

Code Verification

clear

The clear operation clears not only variables created during previous
simulations, but all workspace variables, some of which are standard
variables that the f14rtw model requires.

3 Reload the model so that the standard workspace variables are redeclared
and initialized:

a Close the model by clicking its window’s Close box.

b At the MATLAB prompt, type:

f14rtw

The model reopens, which declares and initializes the standard
workspace variables.

4 Open the Stick Input Scope block and click the Parameters button (the
second button from the left) on the toolbar of the Scope window. The Stick
Input Parameters dialog box opens.

5 Click the Data History tab of the Stick Input Parameters dialog box.

6 Select the Save data to workspace option and change the Variable
name to Stick_input. The dialog box appears as follows:

7 Click OK.

The Stick Input parameters now specify that the Stick Input signal to the
Scope block will be logged to the array Stick_input during simulation.

3-25

3 Working with the Real-Time Workshop® Software

The generated code will log the same signal data to the MAT-file variable
rt_Stick_input during a run of the executable program.

8 Configure the Pilot G Force and Angle of Attack Scope blocks similarly,
using the variable names Pilot_G_force and Angle_of_attack.

9 Save the model.

Logging Simulation Data
The next step is to run the simulation and log the signal data from the Scope
blocks:

1 Open the Stick Input, Pilot G Force, and Angle of Attack Scope blocks.

2 Run the model. The three Scope plots look like this:

3 Use the whos command to show that the array variables Stick_input,
Pilot_G_force, and Angle_of_attack have been saved to the workspace.

4 Plot one or more of the logged variables against simulation time. For
example,

plot(tout, Stick_input(:,2))

Logging Data from the Generated Program
Because you have modified the model, you must rebuild and run the f14rtw
executable to obtain a valid data file:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

3-26

Code Verification

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 Select Real-Time Workshop on the center pane of the Model Explorer,
and click the Interface tab. The Interface pane appears.

5 Set the MAT-file variable name modifier menu to rt_. This prefixes
rt_ to each variable that you selected to be logged in the first part of this
tutorial.

6 Click Apply.

7 Save the model.

8 Generate code and build an executable by clicking the Build button. Status
messages in the MATLAB Command Window track the build process.

9 When the build finishes, run the stand-alone program from MATLAB.

!f14rtw

The executing program writes the following messages to the MATLAB
Command Window.

** starting the model **
** created f14rtw.mat **

10 Load the data file f14rtw.mat and observe the workspace variables.

>> load f14rtw

>> whos rt*

Name Size Bytes Class Attributes

rt_Angle_of_attack 601x2 9616 double

rt_Pilot_G_force 601x2 9616 double

rt_Stick_input 601x2 9616 double

rt_tout 601x1 4808 double

rt_yout 601x2 9616 double

3-27

3 Working with the Real-Time Workshop® Software

11 Use MATLAB to plot three workspace variables created by the executing
program as a function of time.

figure('Name','Stick_input')
plot(rt_tout,rt_Stick_input(:,2))
figure('Name','Pilot_G_force')
plot(rt_tout,rt_Pilot_G_force(:,2))
figure('Name','Angle_of_attack')
plot(rt_tout,rt_Angle_of_attack(:,2))

Your Simulink simulations and the generated code have apparently
produced nearly identical output. The next section shows how to quantify
this similarity.

Comparing Numerical Results of the Simulation and
the Generated Program
You have now obtained data from a Simulink run of the model and from a run
of the program generated from the model. It is a simple matter to compare the
f14rtw model output to the Real-Time Workshop results. Your comparison
results may differ from those shown below.

To compare Angle_of_attack (simulation output) to rt_Angle_of_attack
(generated program output), type:

max(abs(rt_Angle_of_attack-Angle_of_attack))

MATLAB prints:

ans =
1.0e-015 *

0 0.3331

3-28

Code Verification

Similarly, the comparison of Pilot_G_force (simulation output) to
rt_Pilot_G_force (generated program output) is:

max(abs(rt_Pilot_G_force-Pilot_G_force))
1.0e-013 *

0 0.4974

Overall agreement is within 10-13. The means of residuals are an order of
magnitude smaller. This slight error can be caused by many factors, including

• Different compiler optimizations

• Statement ordering

• Runtime libraries

For example, a function call such as sin(2.0) might return a slightly different
value depending on which C library you are using. Such variations can also
cause differences between your results and those shown above.

3-29

3 Working with the Real-Time Workshop® Software

First Look at Generated Code

In this section...

“Tutorial Overview” on page 3-30

“Setting Up the Model” on page 3-30

“Generating Code Without Buffer Optimization” on page 3-32

“Generating Code with Buffer Optimization” on page 3-34

“Further Optimization: Expression Folding” on page 3-36

“HTML Code Generation Reports” on page 3-38

Tutorial Overview
In this tutorial, you examine code generated from a simple model to observe
the effects of some of the many Real-Time Workshop® code optimization
features.

Note You can view the code generated from this example using the MATLAB®

editor. You can also view the code in the MATLAB Help browser if you enable
the Create HTML report option before generating code. See the following
section, “HTML Code Generation Reports” on page 3-38, for an introduction
to using the HTML report feature.

The source model, example.mdl, is shown below.

Setting Up the Model
First, create the model from Simulink® library blocks, and set up basic
Simulink and Real-Time Workshop parameters as follows:

3-30

First Look at Generated Code

1 Create a directory, example_codegen, and make it your working directory:

!mkdir example_codegen
cd example_codegen

2 Create a new model and save it as example.mdl.

3 Add Sine Wave, Gain, and Out1 blocks to your model and connect them as
shown in the preceding diagram. Label the signals as shown.

4 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

5 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

6 Click Configuration (Active) in the left pane.

7 Select Solver in the center pane. The Solver pane appears at the right.

8 In the Solver Options pane:

a Select Fixed-step in the Type field.

b Select discrete (no continuous states) in the Solver field.

c Specify 0.1 in the Fixed-step size field. (Otherwise, the Real-Time
Workshop code generator posts a warning and supplies a default value
when you generate code.)

9 Click Apply.

10 Click Data Import/Export in the center pane and make sure all check
boxes in the right pane are cleared. Click Apply if you made any changes.

11 Select Real-Time Workshop in the center pane. Under Target Selection
in the right pane, select the default generic real-time (GRT) target grt.tlc.

12 Select Generate code only at the bottom of the right pane. This option
causes the Real-Time Workshop software to generate code and a make file,
then stop at that point, rather than proceeding to invoke make to compile
and link the code. Note that the label on the Build button changes to
Generate code.

3-31

3 Working with the Real-Time Workshop® Software

13 Click Apply.

14 Save the model.

Generating Code Without Buffer Optimization
When the block I/O optimization feature is enabled, the Real-Time Workshop
software uses local storage for block outputs wherever possible. In this
tutorial, you disable this option to see what the nonoptimized generated code
looks like:

1 Select Optimization in the center pane. The Optimization pane appears
at the right. Clear the Signal storage reuse option, as shown below.
Change any other attributes as needed to match the figure.

2 Click Apply.

3 Select Real-Time Workshop in the center pane, and click Generate code
on the right.

4 Because you selected the Generate code only option, the Real-Time
Workshop build process does not invoke your make utility. The code
generation process ends with this message:

Successful completion of Real-Time Workshop
build procedure for model: example

3-32

First Look at Generated Code

5 The generated code is in the build directory, example_grt_rtw. The file
example_grt_rtw/example.c contains the output computation for the
model. Open this file in the MATLAB editor.

6 In example.c, find the function example_output near the top of the file.

The generated C code consists of procedures that implement the algorithms
defined by your Simulink block diagram. The execution engine calls the
procedures in proper succession as time moves forward. The modules that
implement the execution engine and other capabilities are referred to
collectively as the run-time interface modules. See Real-Time Workshop
User’s Guide for a complete discussion of how the Real-Time Workshop
software interfaces and executes application, system-dependent, and
system-independent modules, in each of the two styles of generated code.

In code generated for example, the generated example_output function
implements the actual algorithm for multiplying a sine wave by a gain.
The example_output function computes the model’s block outputs. The
run-time interface must call example_output at every time step. With buffer
optimizations turned off, example_output assigns unique buffers to each block
output. These buffers (rtB.sin_out, rtB.gain_out) are members of a global
block I/O data structure, called in this code example_B and declared as follows:

/* Block signals (auto storage) */
BlockIO_example example_B;

The data type BlockIO_example is defined in example.h as follows:

/* Block signals (auto storage) */
typedef struct {

real_T sin_out; /* '<Root>/Sine Wave' */
real_T gain_out; /* '<Root>/Gain' */

} BlockIO_example;

3-33

3 Working with the Real-Time Workshop® Software

The output code accesses fields of this global structure, as shown below:

/* Model output function */

static void example_output(int_T tid)

{

/* Sin: '<Root>/Sine Wave' */

example_B.sin_out = sin(example_M->Timing.t[0] * example_P.SineWave_Freq +

example_P.SineWave_Phase) * example_P.SineWave_Amp + example_P.SineWave_Bias;

/* Gain: '<Root>/Gain' */

example_B.gain_out = example_B.sin_out * example_P.Gain_Gain;

/* Outport: '<Root>/Out1' */

example_Y.Out1 = example_B.gain_out;

UNUSED_PARAMETER(tid);

}

7 In GRT targets such as this, the function example_output is called
by a wrapper function, MdlOutputs. In example.c, find the function
MdlOutputs near the end. It looks like this:

void MdlOutputs(int_T tid)
{

example_output(tid);
}

Note In previous releases, MdlOutputs was the actual output function for
code generated by all GRT-configured models. It is now implemented as a
wrapper function to provide greater compatibility among different target
configurations.

In the steps below, you turn buffer optimizations on and observe how these
optimizations improve the code.

Generating Code with Buffer Optimization
Enable signal buffer optimizations and regenerate the code as follows:

3-34

First Look at Generated Code

1 Change your current working directory back to example_codegen if you
have not already done so.

2 Select Optimization in the center pane. The Optimization pane appears
at the right. Select the Signal storage reuse option.

3 Note that three controls become enabled in the Code generation section:
Enable local block outputs, Reuse block outputs, and Eliminate
superfluous temporary variables (Expression folding). Make sure
that the first two options are selected, and Eliminate superfluous
temporary variables (Expression folding) is not selected, as shown
below.

You will observe the effects of expression folding later in this tutorial. Not
performing expression folding allows you to see the effects of the block
output optimizations.

4 Click Apply to apply the new settings.

5 Select Real-Time Workshop in the center pane, and click Generate code
on the right.

As before, the Real-Time Workshop software generates code in the
example_grt_rtw directory. The previously generated code is overwritten.

3-35

3 Working with the Real-Time Workshop® Software

6 Edit example_grt_rtw/example.c and examine the function
example_output.

With buffer optimizations enabled, the code in example_output reuses
temporary buffers with local scope, rtb_sin_out and rtb_gain_out, rather
than assigning global buffers to each input and output.

/* Model output function */

static void example_output(int_T tid)

{

/* local block i/o variables */

real_T rtb_sin_out;

/* Sin: '<Root>/Sine Wave' */

rtb_sin_out = sin(example_M->Timing.t[0] * example_P.SineWave_Freq +

example_P.SineWave_Phase) * example_P.SineWave_Amp +

example_P.SineWave_Bias;

/* Gain: '<Root>/Gain' */

rtb_sin_out *= example_P.Gain_Gain;

/* Outport: '<Root>/Out1' */

example_Y.Out1 = rtb_sin_out;

UNUSED_PARAMETER(tid);

}

This code is more efficient in terms of memory usage. The efficiency
improvement gained by enabling Enable local block outputs and Reuse
block outputs would be more significant in a large model with many signals.

Further Optimization: Expression Folding
As a final optimization, you turn on expression folding, a code optimization
technique that minimizes the computation of intermediate results and the
use of temporary buffers or variables.

Enable expression folding and regenerate the code as follows:

1 Change your current working directory back to example_codegen if you
have not already done so.

3-36

First Look at Generated Code

2 Select Optimization in the center pane. The Optimization pane appears.

3 Select the Eliminate superfluous temporary variables (Expression
folding) option.

4 Click Apply.

5 Select Real-Time Workshop in the center pane, and click Generate code
on the right.

The Real-Time Workshop software generates code as before.

6 Edit example_grt_rtw/example.c and examine the function
example_output.

In the previous examples, the Gain block computation was computed in a
separate code statement and the result was stored in a temporary location
before the final output computation.

With Eliminate superfluous temporary variables (Expression folding)
selected, there is a subtle but significant difference in the generated code:
the gain computation is incorporated (or folded) directly into the Outport
computation, eliminating the temporary location and separate code statement.
This computation is on the last line of the example_output function.

/* Model output function */

3-37

3 Working with the Real-Time Workshop® Software

static void example_output(int_T tid)

{

/* Outport: '<Root>/Out1' incorporates:

* Gain: '<Root>/Gain'

* Sin: '<Root>/Sine Wave'

*/

example_Y.Out1 = (sin(example_M->Timing.t[0] * example_P.SineWave_Freq +

example_P.SineWave_Phase) * example_P.SineWave_Amp +

example_P.SineWave_Bias) * example_P.Gain_Gain;

UNUSED_PARAMETER(tid);

}

In many cases, expression folding can incorporate entire model computations
into a single, highly optimized line of code. Expression folding is turned on by
default. Using this option will improve the efficiency of generated code.

HTML Code Generation Reports
When the Create code generation report check box on the Real-Time
Workshop > Report pane is selected, a navigable summary of source files is
produced when the model is built. See the figure below.

Selecting this option causes the Real-Time Workshop software to produce
an HTML file for each generated source file, plus a summary and an index
file, in a directory named html within the build directory. If the Launch
report automatically option (which is enabled by selecting Create code
generation report) is also selected, the HTML summary and index are
automatically displayed.

In the HTML report, you can click links in the report to inspect source and
include files, and view relevant documentation. In these reports,

• Global variable instances are hyperlinked to their definitions.

• Block header comments in source files are hyperlinked back to the model;
clicking one of these causes the block that generated that section of code to
be highlighted (this feature requires a Real-Time Workshop® Embedded
Coder™ license and the ERT target).

3-38

First Look at Generated Code

An HTML report for the example.mdl GRT target is shown below.

One useful feature of HTML reports is the link on the Summary page
identifying Configuration Settings at the Time of Code Generation. Clicking
this opens a read-only Configuration Parameters dialog box through which
you can navigate to identify the settings of every option in place at the time
that the HTML report was generated.

You can refer to HTML reports at any time. To review an existing HTML
report after you have closed its window, use any HTML browser to open the
file html/model_codgen_rpt.html within your build directory.

Note The contents of HTML reports for different target types vary, and
reports for models with subsystems feature additional information. You
can also view HTML-formatted files and text files for generated code and
model reference targets within Model Explorer. See “Generating Code for a
Referenced Model” on page 3-55 for more information.

For further information on configuring and optimizing generated code, consult
these sections of the Real-Time Workshop User’s Guide documentation:

3-39

3 Working with the Real-Time Workshop® Software

• “Code Generation and the Build Process” contains overviews of controlling
optimizations and other code generation options.

• “Optimizing a Model for Code Generation” has additional details on signal
reuse, expression folding, and other code optimization techniques.

• “Program Architecture” has details on the structure and execution of
model.c files.

3-40

Working with External Mode Using GRT

Working with External Mode Using GRT

In this section...

“Tutorial Overview” on page 3-41

“Setting Up the Model” on page 3-42

“Building the Target Executable” on page 3-44

“Running the External Mode Target Program” on page 3-47

“Tuning Parameters” on page 3-53

Tutorial Overview
This section provides step-by-step instructions for getting started with
external mode, a very useful environment for rapid prototyping. The tutorial
consists of four parts, each of which depends on completion of the preceding
ones, in order. The four parts correspond to the steps that you follow in
simulating, building, and tuning an actual real-time application:

1 Set up the model.

2 Build the target executable.

3 Run the external mode target program.

4 Tune parameters.

The example presented uses the generic real-time target, and does not require
any hardware other than the computer on which you run the Simulink® and
Real-Time Workshop® software. The generated executable in this example
runs on the host computer in a separate process from MATLAB® and
Simulink.

The procedures for building, running, and testing your programs are almost
identical in UNIX® and PC environments. The discussion notes differences
where applicable.

3-41

3 Working with the Real-Time Workshop® Software

For a more thorough description of external mode, including a discussion of all
the options available, see “Using the External Mode User Interface” in the
Real-Time Workshop documentation.

Setting Up the Model
In this part of the tutorial, you create a simple model, extmode_example, and
a directory called ext_mode_example to store the model and the generated
executable:

1 Create the directory from the MATLAB command line by typing

mkdir ext_mode_example

2 Make ext_mode_example your working directory:

cd ext_mode_example

3 Create a model in Simulink with a Sine Wave block for the input signal, two
Gain blocks in parallel, and two Scope blocks. The model is shown below.
Be sure to label the Gain and Scope blocks as shown, so that subsequent
steps will be clear to you.

4 Define and assign two variables A and B in the MATLAB workspace as
follows:

A = 2; B = 3;

3-42

Working with External Mode Using GRT

5 Open Gain block A and set its Gain parameter to the variable A.

6 Similarly, open Gain block B and set its Gain parameter to the variable B.

When the target program is built and connected to Simulink in external
mode, you can download new gain values to the executing target program
by assigning new values to workspace variables A and B, or by editing
the values in the block parameters dialog. You explore this in “Tuning
Parameters” on page 3-53.

7 Verify correct operation of the model. Open the Scope blocks and run the
model. When A = 2 and B = 3, the output looks like this.

8 From the File menu, choose Save As. Save the model as
extmode_example.mdl.

3-43

3 Working with the Real-Time Workshop® Software

Building the Target Executable
In this section, you set up the model and code generation parameters required
for an external mode compatible target program. Then you generate code and
build the target executable:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 Select Solver in the center pane. The Solver pane appears at the right.

5 In the Solver Options pane:

a Select Fixed-step in the Type field.

b Select discrete (no continuous states) in the Solver field.

c Specify 0.1 in the Fixed-step size field. (Otherwise, the Real-Time
Workshop build process posts a warning and supplies a value when you
generate code.)

3-44

Working with External Mode Using GRT

6 Click Apply. The dialog box appears below. Note that after you click
Apply, the controls you changed again have a white background color.

7 Click Data Import/Export in the center pane, and clear the Time and
Output check boxes. In this tutorial, data is not logged to the workspace or
to a MAT-file. Click Apply.

8 Click Optimization in the center pane. Make sure that the Inline
parameters option is not selected. Although external mode supports
inlined parameters, you will not explore them in this tutorial. Click Apply
if you have made any changes.

9 Click Real-Time Workshop in the center pane. By default, the generic
real-time (GRT) target is selected on the Real-Time Workshop pane.
Select the Interface tab. The Interface pane appears at the right.

10 In the Interface pane, select External mode from the Interface pull-down
menu in the Data exchange section. This enables generation of external

3-45

3 Working with the Real-Time Workshop® Software

mode support code and reveals two more sections of controls: Host/Target
interface and Memory management.

11 Set the Transport layer pull-down menu in the Host/Target interface
section to tcpip. The pane now looks like this:

External mode supports communication via TCP/IP, serial, and custom
transport protocols. The MEX-file name field specifies the name of a
MEX-file that implements host and target communications on the host
side. The default for TCP/IP is ext_comm, a MEX-file provided with the
Real-Time Workshop software. You can override this default by supplying
appropriate files. See “Creating an External Mode Communication
Channel” in the Real-Time Workshop documentation for details if you need
to support other transport layers.

3-46

Working with External Mode Using GRT

The MEX-file arguments field lets you specify arguments, such as a
TCP/IP server port number, to be passed to the external interface program.
Note that these arguments are specific to the external interface you are
using. For information on setting these arguments, see “MEX-File Optional
Arguments for TCP/IP Transport” and “MEX-File Optional Arguments for
Serial Transport” in the Real-Time Workshop documentation.

This tutorial uses the default arguments. Leave the MEX-file arguments
field blank.

12 Click Apply to save the Interface settings.

13 Save the model.

14 Click Real-Time Workshop in the center pane of the Model Explorer.
On the right, make sure that Generate code only is cleared, then click
the Build button to generate code and create the target program. The
content of subsequent messages depends on your compiler and operating
system. The final message is

Successful completion of Real-Time Workshop
build procedure for model: extmode_example

In the next section, you will run the extmode_example executable and use
Simulink as an interactive front end to the running target program.

Running the External Mode Target Program
The target executable, extmode_example, is now in your working directory.
In this section, you run the target program and establish communication
between Simulink and the target.

Note An external-mode program like extmode_example is a host-based
executable. Its execution is not tied to RTOS or a periodic timer interrupt, and
it does not run in real time. The program just runs as fast as possible, and
the time units it counts off are simulated time units that do not correspond to
time in the world outside the program.

3-47

3 Working with the Real-Time Workshop® Software

The External Signal & Triggering dialog box (accessed via the External
Mode Control Panel) displays a list of all the blocks in your model that
support external mode signal monitoring and logging. The dialog box also lets
you configure the signals that are viewed and how they are acquired and
displayed. You can use it to reconfigure signals while the target program runs.

In this tutorial, you observe and use the default settings of the External
Signal & Triggering dialog box.

3-48

Working with External Mode Using GRT

1 From the Tools menu of the block diagram, select External Mode
Control Panel, which lets you configure signal monitoring and data
archiving. It also lets you connect to the target program and start and stop
execution of the model code.

The top three buttons are for use after the target program has started. The
two lower buttons open separate dialog boxes:

• The Signal & triggering button opens the External Signal &
Triggering dialog box. This dialog box lets you select the signals that
are collected from the target system and viewed in external mode. It also
lets you select a signal that triggers uploading of data when certain
signal conditions are met, and define the triggering conditions.

• The Data archiving button opens the External Data Archiving
dialog box. Data archiving lets you save data sets generated by the target
program for future analysis. This example does not use data archiving.
See “Data Archiving” in the Real-Time Workshop documentation for
more information.

3-49

3 Working with the Real-Time Workshop® Software

2 In the External Mode Control Panel, click the Signal & Triggering
button. The External Signal & Triggering dialog box opens. The
default configuration of the External Signal & Triggering dialog box is
designed to ensure that all signals are selected for monitoring. The default
configuration also ensures that signal monitoring will begin as soon as the
host and target programs have connected. The figure below shows the
default configuration for extmode_example.

3-50

Working with External Mode Using GRT

3 Make sure that the External Signal & Triggering dialog box is set to
the defaults as shown:

• Select all check box is selected. All signals in the Signal selection list
are marked with an X in the Block column.

• Trigger Source: manual

• Trigger Mode: normal

• Duration: 1000

• Delay: 0

• Arm when connecting to target: selected

Click Close, and then close the External Mode Control Panel.

For information on the options mentioned above, see “External Signal
Uploading and Triggering” in the Real-Time Workshop documentation.

4 To run the target program, you must open a command prompt window
(on UNIX systems, an Xterm window). At the command prompt, change
to the ext_mode_example directory that you created in step 1. The target
program is in this directory.

cd ext_mode_example

Next, type the following command:

extmode_example -tf inf -w

and press Return.

Note On Microsoft® Windows® platforms, you can also use the “bang”
command (!) in the MATLAB Command Window (note that the trailing
ampersand is required): !extmode_example -tf inf -w &

The target program begins execution. Note that the target program is in a
wait state, so no activity occurs in the MATLAB Command Window.

3-51

3 Working with the Real-Time Workshop® Software

The -tf switch overrides the stop time set for the model in Simulink. The
inf value directs the model to run indefinitely. The model code runs until
the target program receives a stop message from Simulink.

The -w switch instructs the target program to enter a wait state until it
receives a Start real-time code message from the host. This switch is
required if you want to view data from time step 0 of the target program
execution, or if you want to modify parameters before the target program
begins execution of model code.

5 Open Scope blocks A and B. At this point, no signals are visible on the
scopes. When you connect Simulink to the target program and begin model
execution, the signals generated by the target program will be visible on
the scope displays.

6 The model itself must be in external mode before communication between
the model and the target program can begin. To enable external mode,
select External from the simulation mode pull-down menu located on the
right side of the toolbar of the Simulink window. Alternatively, you can
select External from the Simulation menu.

7 Reopen the External Mode Control Panel (found in the Tools menu)
and click Connect. This initiates a handshake between Simulink and the
target program. When Simulink and the target are connected, the Start
Real-Time Code button becomes enabled, and the label of the Connect
button changes to Disconnect.

3-52

Working with External Mode Using GRT

8 Click the Start Real-Time Code button. The outputs of Gain blocks A and
B are displayed on the two scopes in your model. With A = 2 and B = 3,
the output looks like this:

Having established communication between Simulink and the running target
program, you can tune block parameters in Simulink and observe the effects
the parameter changes have on the target program. You do this in the next
section.

Tuning Parameters
You can change the gain factor of either Gain block by assigning a new value
to the variable A or B in the MATLAB workspace. When you change block
parameter values in the workspace during a simulation, you must explicitly
update the block diagram with these changes. When the block diagram is
updated, the new values are downloaded to the target program.

To tune the variables A and B,

1 In the MATLAB Command Window, assign new values to both variables,
for example:

A = 0.5;B = 3.5;

2 Activate the extmode_example model window. Select Update Diagram
from the Edit menu, or press Ctrl+D. As soon as Simulink has updated
the block parameters, the new gain values are downloaded to the target
program, and the effect of the gain change becomes visible on the scopes.

3-53

3 Working with the Real-Time Workshop® Software

3 You can also enter gain values directly into the Gain blocks. To do this,
open the Block Parameters dialog box for Gain block A or B in the model.
Enter a new numerical value for the gain and click Apply. As soon as
you click Apply, the new value is downloaded to the target program and
the effect of the gain change becomes visible on the scope. Similarly, you
can change the frequency, amplitude, or phase of the sine wave signal by
opening the Block Parameters dialog box for the Sine Wave block and
entering a new numerical value in the appropriate field.

Note that because the Sine Wave is a source block, Simulink pauses while
the Block Parameters dialog box is open. You must close the dialog box
by clicking OK, which allows Simulink to continue and enable you to see
the effect of your changes.

Also note that you cannot change the sample time of the Sine Wave block.
Block sample times are part of the structural definition of the model and
are part of the generated code. Therefore, if you want to change a block
sample time, you must stop the external mode simulation, reset the block’s
sample time, and rebuild the executable.

4 To simultaneously disconnect host/target communication and end execution
of the target program, pull down the Simulation menu and select Stop
Real-Time Code. You can also do this from the External Mode Control
Panel.

3-54

Generating Code for a Referenced Model

Generating Code for a Referenced Model

In this section...

“Tutorial Overview” on page 3-55

“Creating and Configuring a Subsystem Within the vdp Model” on page 3-55

“Converting the Model to Use Model Referencing” on page 3-58

“Generating Model Reference Code for a GRT Target” on page 3-62

“Working with Project Directories” on page 3-65

Tutorial Overview
The Model block allows an existing Simulink® model to be used as a block in
another model. When a model contains one or more Model blocks, it is called
a parent model. Models represented by Model blocks are called referenced
models in that context.

Model blocks are particularly useful for large-scale modeling applications.
They work by generating code and creating a binary file for each referenced
model, then executing the binary during simulation. The Real-Time
Workshop® software generates code for referenced models in a slightly
different way than for top models and stand-alone models, and generates
different code than Simulink does when it simulates them. Follow this
tutorial to learn how Simulink and the Real-Time Workshop software handle
Model blocks.

In this tutorial, you create a subsystem in an existing model, convert it to a
referenced model, call it from the top model via a Model block, and generate
code for both models. You accomplish some of these tasks automatically with
a function called Simulink.Subsystem.convertToModelReference. You also
explore the generated code and the project directory using the Model Explorer.

Creating and Configuring a Subsystem Within the
vdp Model
In the first part of this tutorial, you define a subsystem for the vdp
demo model, set configuration parameters for the model, and use the
Simulink.Subsystem.convertToModelReference function to convert it into

3-55

3 Working with the Real-Time Workshop® Software

two new models — the top model (vdptop) and a referenced model vdpmultRM
containing a subsystem you created (vdpmult):

1 In the MATLAB® Command Window, create a new working directory
wherever you want to work and cd into it:

mkdir tutorial6
cd tutorial6

2 Open the vdp demo model by typing:

vdp

3 Drag a box around the three blocks on the left to select them, as shown
below:

4 Choose Create Subsystem from the model’s Edit menu.

A subsystem block replaces the selected blocks.

5 If the new subsystem block is not where you want it, move it to a preferred
location.

6 Rename the block vdpmult.

3-56

Generating Code for a Referenced Model

7 Right-click the vdpmult block and select Subsystem Parameters.

The Function Block Parameters dialog box appears.

8 In the Function Block Parameters dialog box, select Treat as atomic
unit, then click OK.

The border of the vdpmult subsystem thickens to indicate that it is now
atomic. An atomic subsystem executes as a unit relative to the parent
model: subsystem block execution does not interleave with parent block
execution. This property makes it possible to extract subsystems for use as
stand-alone models and as functions in generated code.

The block diagram should now appear as follows:

You must set several properties before you can extract a subsystem for use as
a referenced model. To set the necessary properties,

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

3-57

3 Working with the Real-Time Workshop® Software

4 In the center pane, select Solver.

5 In the right pane, under Solver Options change the Type to Fixed-step,
then click Apply. You must use fixed-step solvers when generating code,
although referenced models can use different solvers than top models.

6 In the center pane, select Optimization. In the right pane, under
Simulation and code generation, select Inline parameters. Click
Apply.

7 In the center pane, select Diagnostics. In the right pane:

a Select the Data Validity tab. In the Signals area, set Signal
resolution to Explicit only.

b Select the Connectivity tab. In the Buses area, set Mux blocks used
to create bus signals to error.

8 Click Apply.

The model now has the properties that model referencing requires.

9 In the center pane, click Model Referencing. In the right pane, set
Rebuild options to If any changes in known dependencies detected.
Click Apply. This setting prevents unnecessary code regeneration.

10 In the vdp model window, choose File > Save as. Save the model as vdptop
in your working directory. Leave the model open.

Converting the Model to Use Model Referencing
In this portion of the tutorial, you use the conversion function
Simulink.SubSystem.convertToModelReference to extract the subsystem
vdpmult from vdptop and convert vdpmult into a referenced model named
vdpmultRM. To see the complete syntax of the conversion function, type at
the MATLAB prompt:

help Simulink.SubSystem.convertToModelReference

For additional information, type:

doc Simulink.SubSystem.convertToModelReference

3-58

Generating Code for a Referenced Model

If you want to see a demo of Simulink.SubSystem.convertToModelReference
before using it yourself, type:

sldemo_mdlref_conversion

Simulink also provides a menu command, Convert to Model Block, that
you can use to convert a subsystem to a referenced model. The command calls
Simulink.SubSystem.convertToModelReference with default arguments.
See “Converting a Subsystem to a Referenced Model” in the Simulink
documentation.

Extracting the Subsystem to a Referenced Model
To use Simulink.SubSystem.convertToModelReference to extract vdpmult
and convert it to a referenced model, type:

Simulink.SubSystem.convertToModelReference...
('vdptop/vdpmult', 'vdpmultRM',...
'ReplaceSubsystem', true, 'BuildTarget', 'Sim')

This command:

1 Extracts the subsystem vdpmult from vdptop.

2 Converts the extracted subsystem to a separate model named vdpmultRM
and saves the model to the working directory.

3 In vdptop, replaces the extracted subsystem with a Model block that
references vdpmultRM.

4 Creates a simulation target for vdptop and vdpmultRM.

The converter prints a number of progress messages, and when successful,
terminates with

ans =
1

3-59

3 Working with the Real-Time Workshop® Software

The parent model vdptop now looks like this:

Note the changes in the appearance of the block vdpmult. These changes
indicate that it is now a Model block rather than a subsystem. As a Model
block, it has no contents of its own: the previous contents now exist in the
referenced model vdpmultRM, whose name appears at the top of the Model
block. Widen the Model block as needed to expose the complete name of the
referenced model.

If the parent model vdptop had been closed at the time of conversion, the
converter would have opened it. Extracting a subsystem to a referenced model
does not automatically create or change a saved copy of the parent model. To
preserve the changes to the parent model, save vdptop.

Right-click the Model block vdpmultRM and choose Open Model
’vdpmultRM’ to open the referenced model. The model looks like this:

3-60

Generating Code for a Referenced Model

Files Created and Changed by the Converter
The files in your working directory now consist of the following (not in this
order).

File Description

vdptop.mdl Top-level model that contains a Model block
where the vdpmult subsystem was

vdpmultRM.mdl Referenced model created for the vdpmult
subsystem

vdpmultRM_msf.mexw32 Static library file (Microsoft® Windows®

platforms only). The last three characters
of the suffix are system-dependent and may
differ. This file executes when the vdptop
model calls the model block vdpmult. When
called, vdpmult in turn calls the referenced
model vdpmultRM.

/slprj Project directory for generated model
reference code

Code for model reference simulation targets is placed in the slprj/sim
subdirectory. Generated code for GRT, ERT, and other Real-Time Workshop
targets is placed in slprj subdirectories named for those targets. You will
inspect some model reference code later in this tutorial. For more information
on project directories, see “Working with Project Directories” on page 3-65.

3-61

3 Working with the Real-Time Workshop® Software

Running the Converted Model
Open the Scope block in vdptop if it is not visible. In the vdptop window, click
the Start tool or choose Start from the Simulation menu. The model calls
the vdpmultRM_msf simulation target to simulate. The output looks like this:

Generating Model Reference Code for a GRT Target
The function Simulink.SubSystem.convertToModelReference created the
model and the simulation target files for the referenced model vdpmultRM. In
this part of the tutorial, you generate code for that model and the vdptop
model, and run the executable you create:

1 Verify that you are still working in the tutorial6 directory.

2 If the model vdptop is not open, open it. Make sure it is the active window.

3 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

4 In the Model Hierarchy pane, click the + sign preceding the vdptop
model to reveal its components.

5 Click Configuration (Active) in the left pane.

6 In the center pane, select Data Import/Export.

3-62

Generating Code for a Referenced Model

7 Check Time and Output in the Save to workspace section of the right
pane, then click Apply. The pane shows the following information:

These settings instruct the model vdptop (and later its executable) to log
time and output data to MAT-files for each time step.

8 Generate GRT code (the default) and an executable for the top model and
the referenced model by selecting Real-Time Workshop in the center
pane and then clicking the Build button.

The Real-Time Workshop build process generates and compiles code. The
current directory now contains a new file and a new directory:

File Description

vdptop.exe The executable created by the
Real-Time Workshop build process

vdptop_grt_rtw/ The Real-Time Workshop build
directory, containing generated code
for the top model

The Real-Time Workshop build process also generated GRT code for the
referenced model, and placed it in the slprj directory.

3-63

3 Working with the Real-Time Workshop® Software

To view a model’s generated code in Model Explorer, the model must
be open. To use the Model Explorer to inspect the newly created build
directory, vdptop_grt_rtw:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click the + sign preceding Code for vdptop to reveal its components.

4 Click This Model that appears directly under Code for vdptop.

A list of generated code files for vdptop_converted appears in the
Contents pane:

rtmodel.h
vdptop.c
vdptop.h
vdptop.mk
vdptop_private.h
vdptop_types.h

3-64

Generating Code for a Referenced Model

You can browse code in any of these files by selecting a file of interest in
the Contents pane. The code for the file you select appears in the pane
to the right. The figure below illustrates viewing code for vdptop.c. Your
code may differ.

To open a file in a text editor, click a filename, and then click the hyperlink
that appears in the gray area at the top of the Document pane.

Working with Project Directories
When you view generated code in Model Explorer, the files listed in the
Contents pane can exist either in a build directory or a project directory.
Model reference project directories (always rooted under slprj), like build
directories, are created in your current working directory, and this implies
certain constraints on when and where model reference targets are built,
and how they are accessed.

The models referenced by Model blocks can be stored anywhere. A given top
model can include models stored on different file systems and directories. The
same is not true for the simulation targets derived from these models; under
most circumstances, all models referenced by a given top model must be set
up to simulate and generate model reference target code in a single project
directory. The top and referenced models can exist anywhere on your path,
but the project directory is assumed to exist in your current directory.

3-65

3 Working with the Real-Time Workshop® Software

This means that, if you reference the same model from several top models,
each stored in a different directory, you must either

• Always work in the same directory and be sure that the models are on
your path

• Allow separate project directories, simulation targets, and Real-Time
Workshop targets to be generated in each directory in which you work

The files in such multiple project directories are generally quite redundant.
Therefore, to avoid regenerating code for referenced models more times than
necessary, you might want to choose a specific working directory and remain
in it for all sessions.

As model reference code generated for Real-Time Workshop targets as well as
for simulation targets is placed in project directories, the same considerations
as above apply even if you are generating target applications only. That is,
code for all models referenced from a given model ends up being generated in
the same project directory, even if it is generated for different targets and at
different times.

3-66

Documenting a Code Generation Project

Documenting a Code Generation Project

In this section...

“Tutorial Overview” on page 3-67

“Generating Code for the Model” on page 3-68

“Opening Report Generator” on page 3-69

“Setting Report Output Options” on page 3-70

“Specifying Models and Subsystems to Include in a Report” on page 3-72

“Setting Component Options” on page 3-72

“Generating the Report” on page 3-73

“Reviewing the Generated Report” on page 3-73

Tutorial Overview
As explained in “Documenting the Project” on page 2-11, one way of
documenting a Real-Time Workshop® code generation project is to use the
Simulink® Report Generator™ software. In this tutorial, you adjust the
Simulink Report Generator settings to include custom code and then generate
a report for the Real-Time Workshop demo rtwdemo_f14. A summary of the
steps for the tutorial follows:

1 Generate code for the model.

2 Open Report Generator.

3 Set report output options.

4 Specify models and subsystems to be included.

5 Set component options.

6 Generate the report.

7 Review the generated report.

3-67

3 Working with the Real-Time Workshop® Software

Note You need a Simulink Report Generator license to complete steps 3
through 5. If you omit those steps and use the default option settings, the
resulting output will vary from what is documented in step 6.

For details on using Report Generator, see the Simulink Report Generator
User’s Guide.

Generating Code for the Model
Before you can use Report Generator to document your project, you must
generate code for the model. To generate code for the rtwdemo_f14 demo,

1 In the MATLAB® Current Directory browser, navigate to a directory where
you have write access.

2 Create a working directory from the MATLAB command line by typing:

mkdir report_ex

3 Make report_ex your working directory:

cd report_ex

4 Open the rtwdemo_f14 model by clicking the model name below or by
entering the model name on the MATLAB command line.

rtwdemo_f14

The model appears in a Simulink® model window.

5 In the model window, choose File > Save As, navigate to the working
directory, report_ex, and save a copy of the rtwdemo_f14 model as
myf14.mdl.

6 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

7 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3-68

Documenting a Code Generation Project

8 Click Configuration (Active) in the left pane.

9 In the Contents pane, click Real-Time Workshop. The Real-Time
Workshop pane appears.

10 Select the Report tab. Clear the Create code generation report and
Launch report automatically check boxes.

11 Select the General tab. Select Generate code only and click Apply.

12 Click Generate code. The Real-Time Workshop build process generates
code for the model.

Opening Report Generator
After you generate the code, open the Report Generator.

1 In the model window, select Tools > Report Generator. The Report
Explorer window opens.

3-69

3 Working with the Real-Time Workshop® Software

2 In the options pane (center), find the folder rtw (\toolbox\rtw) and the
setup file that it contains — codegen.rpt.

3 Double-click codegen.rpt or select it and click the Open report button

. Report Generator displays the structure of the setup file in the
outline pane (left).

Setting Report Output Options
Before generating a report, you can specify report output options, such as the
directory, file name, and format. The following steps explain how to generate
a Microsoft® Word report named MyCGModelReport.rtf.

3-70

Documenting a Code Generation Project

1 Review the options listed under Report Options in the properties pane.

2 Leave the Directory field set to Present working directory.

3 Select Custom: for Filename and replace index with the name
MyModelCGReport.

4 For File format, specify Rich Text Format and replace Standard Print
with Numbered Chapters & Sections.

5 In the outline pane (left), click Report - codegen.rpt*. The following
acknowledgment dialog box appears.

6 Click OK.

3-71

3 Working with the Real-Time Workshop® Software

Specifying Models and Subsystems to Include in a
Report
Specify the models and subsystems to be included in the generated report by
setting options in the Model Loop component.

1 In the outline pane (left), select Model Loop. Report Generator displays
Model Loop component options in the properties pane.

2 If not already selected, select Current block diagram for the Model
name option.

3 In the outline pane, click Report - codegen.rpt*. If you modified the
value of the Model name option, the change acknowledgment dialog box
appears. If the dialog box appears, click OK.

Setting Component Options
After setting the report output options, review and, if appropriate, adjust
Real-Time Workshop component options.

1 In the outline pane (left), expand the node Chapter - Generated Code.
By default, the report includes two sections, each containing one of two
Real-Time Workshop report components.

2 Expand the node Section 1 — Code Generation Summary. The Code
Generation Summary component appears.

3 Select Code Generation Summary. Options for the component appear in
the properties pane.

4 Click Help to review the report customizations you can make with the
Code Generation Summary component. For this tutorial, do not customize
the component.

5 Return focus to the Report Explorer window and expand the node Section
1 — Generated Code Listing. The Import Generated Code component
appears.

6 Select Import Generated Code. Options for the component appear in
the properties pane.

3-72

Documenting a Code Generation Project

7 Click Help to review the report customizations you can make with the
Import Generated Code component.

8 Return focus to the Report Explorer window.

Generating the Report
After you adjust report options, from the Report Explorer window, generate
the report by clicking File > Report. A Message List dialog box appears,
which displays messages you can monitor as the report is generated. Model
snapshots also appear during report generation.

For alternative ways of generating reports, see “Generating Reports” in the
Simulink Report Generator documentation.

Reviewing the Generated Report
Review your generated report. Make sure the following information is
included:

• System snapshots (model and subsystem diagrams)

• Block execution order list

• Real-Time Workshop and model version information for generated code

• List of generated files

• Optimization configuration parameter settings

• Real-Time Workshop target selection and build process configuration
parameter settings

• Subsystem map

• File name, path, and generated code listings for the following:

- myf14.c

- rt_nonfinite.c

- myf14.h

- myf14_private.h

- myf14_types.h

3-73

3 Working with the Real-Time Workshop® Software

- rt_nonfinite.h

- rtmodel.h

- rtwtypes.h

3-74

Glossary

Glossary

application modules
With respect to Real-Time Workshop® program architecture, these are
collections of programs that implement functions carried out by the
system-dependent, system-independent, and application components.

atomic subsystem
Subsystem whose blocks are executed as a unit before moving on.
Conditionally executed subsystems are atomic, and atomic subsystems
are nonvirtual. Unconditionally executed subsystems are virtual by
default, but can be designated as atomic. The Real-Time Workshop®

build process can generate reusable code only for nonvirtual subsystems.

base sample rate
Fundamental sample time of a model; in practice, limited by the fastest
rate at which a processor’s timer can generate interrupts. All sample
times must be integer multiples of the base rate.

block I/O structure (model_B)
Global data structure for storing block output signals. The number of
block output signals is the sum of the widths of the data output ports
of all nonvirtual blocks in your model. By default, Simulink® and the
Real-Time Workshop® build process try to reduce the size of the model_B
structure by reusing the entries in the model_B structure and making
other entries local variables.

block target file
File that describes how a specific Simulink® block is to be transformed to
a language such as C, based on the block’s description in the Real-Time
Workshop® file (model.rtw). Typically, there is one block target file
for each Simulink® block.

code reuse
Optimization whereby code generated for identical nonvirtual
subsystems is collapsed into one function that is called for each
subsystem instance with appropriate parameters. Code reuse, along
with expression folding, can dramatically reduce the amount of
generated code.

Glossary-1

Glossary

configuration
Set of attributes for a model which defines parameters governing how a
model simulates and generates code. A model can have one or more such
configuration sets, and users can switch between them to change code
generation targets or to modify the behavior of models in other ways.

configuration component
Named element of a configuration set. Configuration components
encapsulate settings associated with the Solver, Data Import/Export,
Optimization, Diagnostics, Hardware Implementation, Model
Referencing, and Real-Time Workshop panes in the Configuration
Parameters dialog box. A component may contain subcomponents.

embedded real-time (ERT) target
Target configuration that generates model code for execution on an
independent embedded real-time system. Requires a Real-Time
Workshop® Embedded Coder™ license.

expression folding
Code optimization technique that minimizes the computation of
intermediate results at block outputs and the storage of such results
in temporary buffers or variables. It can dramatically improve the
efficiency of generated code, achieving results that compare favorably
with hand-optimized code.

file extensions
The table below lists the Simulink®, Target Language Compiler, and
Real-Time Workshop® file extensions.

Extension Created by Description

.c or .cpp Target Language
Compiler

The generated C or
C++ code

.h Target Language
Compiler

C/C++ include header
file used by the .c or
.cpp program

Glossary-2

Glossary

Extension Created by Description

.mdl Simulink® Contains structures
associated with
Simulink® block
diagrams

.mk Real-Time
Workshop®

Makefile specific to
your model that is
derived from the
template makefile

.rtw Real-Time
Workshop®

Intermediate
compilation
(model.rtw) of a
.mdl file used in
generating C or C++
code

.tlc The MathWorks
and Real-Time
Workshop® users

Target Language
Compiler script files
that the Real-Time
Workshop® build
process uses to
generate code for
targets and blocks

.tmf Supplied with
Real-Time
Workshop®

Template makefiles

.tmw Real-Time
Workshop®

Project marker
file inside a build
directory that
identifies the date
and product version
of generated code

generic real-time (GRT) target
Target configuration that generates model code for a real-time system,
with the resulting code executed on your workstation. (Execution is

Glossary-3

Glossary

not tied to a real-time clock.) You can use GRT as a starting point for
targeting custom hardware.

host system
Computer system on which you create and may compile your real-time
application. Also referred to as emulation hardware.

inline
Generally, this means to place something directly in the generated
source code. You can inline parameters and S-functions using the
Real-Time Workshop® software and the Target Language Compiler.

inlined parameters
(Target Language Compiler Boolean global variable: InlineParameters)
The numerical values of the block parameters are hard-coded into the
generated code. Advantages include faster execution and less memory
use, but you lose the ability to change the block parameter values at
run time.

inlined S-function
An S-function can be inlined into the generated code by implementing it
as a .tlc file. The code for this S-function is placed in the generated
model code itself. In contrast, noninlined S-functions require a function
call to an S-function residing in an external MEX-file.

interrupt service routine (ISR)
Piece of code that your processor executes when an external event, such
as a timer, occurs.

loop rolling
(Target Language Compiler global variable: RollThreshold) Depending
on the block’s operation and the width of the input/output ports, the
generated code uses a for statement (rolled code) instead of repeating
identical lines of code (flat code) over the signal width.

make
Utility to maintain, update, and regenerate related programs and files.
The commands to be executed are placed in a makefile.

Glossary-4

Glossary

makefiles
Files that contain a collection of commands that allow groups of
programs, object files, libraries, and so on, to interact. Makefiles are
executed by your development system’s make utility.

model.rtw
Intermediate record file into which the Real-Time Workshop® build
process compiles the blocks, signals, states, and parameters a model,
which the Target Language Compiler reads to generate code to
represent the model.

multitasking
Process by which a microprocessor schedules the handling of multiple
tasks. In generated code, the number of tasks is equal to the number of
sample times in your model. See also pseudo multitasking.

noninlined S-function
In the context of the Real-Time Workshop® build process, this is any C
MEX S-function that is not implemented using a customized .tlc file.
If you create a C MEX S-function as part of a Simulink® model, it is by
default noninlined unless you write your own .tlc file that inlines it.

nonreal-time
Simulation environment of a block diagram provided for high-speed
simulation of your model. Execution is not tied to a real-time clock.

nonvirtual block
Any block that performs some algorithm, such as a Gain block. The
Real-Time Workshop® build process generates code for all nonvirtual
blocks, either inline or as separate functions and files, as directed by
users.

pseudo multitasking
On processors that do not offer multitasking support, you can perform
pseudomultitasking by scheduling events on a fixed time sharing basis.

real-time model data structure
The Real-Time Workshop® build process encapsulates information about
the root model in the real-time model data structure, often abbreviated

Glossary-5

Glossary

as rtM. rtM contains global information related to timing, solvers, and
logging, and model data such as inputs, outputs, states, and parameters.

real-time system
Computer that processes real-world events as they happen, under the
constraint of a real-time clock, and that can implement algorithms in
dedicated hardware. Examples include mobile telephones, test and
measurement devices, and avionic and automotive control systems.

Real-Time Workshop® target
Set of code files generated by the Real-Time Workshop® build process
for a standard or custom target, specified by a Real-Time Workshop®

configuration component. These source files can be built into an
executable program that will run independently of Simulink®. See also
simulation target, configuration.

run-time interface
Wrapper around the generated code that can be built into a stand-alone
executable. The run-time interface consists of routines to move the time
forward, save logged variables at the appropriate time steps, and so on
The run-time interface is responsible for managing the execution of the
real-time program created from your Simulink® block diagram.

S-function
Customized Simulink® block written in C, Fortran, or M-code. The
Real-Time Workshop® build process can target C code S-functions as is
or users can inline C code S-functions by preparing TLC scripts for them.

simstruct
Simulink® data structure and associated application program interface
(API) that enables S-functions to communicate with other entities in
models. Simstructs are included in code generated by the Real-Time
Workshop® build process for noninlined S-functions.

simulation target
Set of code files generated for a model which is referenced by a Model
block. Simulation target code is generated into /slprj/sim project
directory in the working directory. Also an executable library compiled
from these codes that implements a Model block. See also Real-Time
Workshop® target.

Glossary-6

Glossary

single-tasking
Mode in which a model runs in one task, regardless of the number of
sample rates it contains.

stiffness
Property of a problem that forces a numerical method, in one or more
intervals of integration, to use a step length that is excessively small in
relation to the smoothness of the exact solution in that interval.

system target file
Entry point to the Target Language Compiler program, used to
transform the Real-Time Workshop® file into target-specific code.

target file
File that is compiled and executed by the Target Language Compiler.
The block and system target TLC files used specify how to transform
the Real-Time Workshop® file (model.rtw) into target-specific code.

Target Language Compiler (TLC)
Program that compiles and executes system and target files by
translating a model.rtw file into a target language by means of TLC
scripts and template makefiles.

Target Language Compiler program
One or more TLC script files that describe how to convert a model.rtw
file into generated code. There is one TLC file for the target, plus one
for each built-in block. Users can provide their own TLC files to inline
S-functions or to wrap existing user code.

target system
Specific or generic computer system on which your real-time application
is intended to execute. Also referred to as embedded hardware.

targeting
Process of creating software modules appropriate for execution on your
target system.

task identifier (tid)
In generated code, each sample rate in a multirate model is assigned a
task identifier (tid). The tid is used by the model output and update

Glossary-7

Glossary

routines to control the portion of your model that should execute at
a given time step. Single-rate systems ignore the tid. See also base
sample rate.

template makefile
Line-for-line makefile used by a make utility. The Real-Time Workshop®

build process converts the template makefile to a makefile by copying
the contents of the template makefile (usually system.tmf) to a
makefile (usually system.mk) replacing tokens describing your model’s
configuration.

virtual block
Connection or graphical block, for example a Mux block, that has no
algorithmic functionality. Virtual blocks incur no real-time overhead
as no code is generated for them.

work vector
Data structures for saving internal states or similar information,
accessible to blocks that may require such work areas. These include
state work (rtDWork), real work (rtRWork), integer work (rtIWork), and
pointer work (rtPWork) structures. For example, the Memory block uses
a real work element for each signal.

Glossary-8

Index

IndexA
acceleration of development process 1-7
application requirements 2-4

B
block target file 2-18
build directory

contents of 2-26
naming convention 2-25
rtwdemo_f14 example 3-14
seeing files 3-14

build directory optional contents
C API files 2-26
HTML report files 2-26
model.rtw 2-26
object files 2-26
subsystem code modules 2-26
TLC profiler files 2-26

build process
files and directories created 2-20
messages in MATLAB Command

Window 3-13
steps in 2-15

C
code generation for Simulink models 1-4
Code Generation Summary component 3-72
code generation tutorial 3-30

product support for 1-16
code verification tutorial 3-24
code with buffer optimization 3-36

efficiency 3-36
code with expression folding 3-36
code without buffer optimization 3-33
comments options 3-12
compilers

LCC 1-13
list of supported 1-12

MEX 1-12
Microsoft Visual C/C++ 1-13
optimization settings 1-12
Watcom 1-13

configuration parameters 2-5
questions to consider 2-4

D
data logging 3-16

from generated code 3-26
tutorial 3-16
via Scope blocks

example 3-24
debug options 3-11
dialog boxes

Block Parameters 3-43
Configuration Parameters 2-4
External Mode Control Panel 3-49
External Signal and Triggering 3-50
Model Explorer 2-5

directories
build 3-4
working 3-4

documentation 3-67
online 1-19

E
executable

running 3-14
extensible make process 1-6
extensive model debugging support 1-5
external mode

building executable 3-44
control panel 3-49
definition of 1-4
model setup 3-42
parameter tuning 3-53
running executable 3-47

Index-1

Index

tutorial 3-41

F
files

generated. See generated files
fixed-step solver 3-5

G
generated files 2-20

model (UNIX executable) 2-23
model.c 2-21
model_capi.c 2-24
model_capi.h 2-24
model_data.c 2-22
model_dt.h 2-24
model.exe (PC executable) 2-23
model.h 2-21
model.mdl 2-20
model.mk 2-23
model_private.h 2-22
model.rtw 2-21
model_targ_data_map.m 2-24
model_target_rtw 2-25
model_types.h 2-22
modelsources.txt 2-24
rt_nonfinite.c 2-23
rt_nonfinite.h 2-23
rt_sfcn_helper.c, 2-25
rt_sfcn_helper.h 2-25
rtmodel.h 2-23
rtw_proj.tmw 2-23
rtwtypes.h 2-23
subsystem.c 2-24
subsystem.h 2-24

generic real-time (GRT) target
tutorial 3-4

I
Import Generated Code component 3-72
integration

Real-Time Workshop with Simulink 1-5
Real-Time Workshop with Stateflow 1-6

L
large-scale modeling 1-4

M
make process 1-3
make utility 2-13
makefile 2-18
MAT-files

creating 3-19
loading 3-27

MATLAB 1-2
MATLAB Report Generator

opening 3-69
setting component options for 3-72
setting report output options for 3-70
specifying models and subsystems with 3-72

model (on UNIX) 2-23
Model Advisor 2-6
model compiling process 2-17
Model Explorer

viewing code in 3-64
model referencing

converting to 3-58
definition of 3-55
generating code 3-62
tutorial 3-55

model.bat 2-24
model.c 2-21
model_capi.c 2-24
model_capi.h 2-24
model_data.c 2-22
model_dt.h 2-24

Index-2

Index

model.h 2-21
model.mdl 2-20
model.mk 2-23
model_private.h 2-22
model.rtw 2-21
model_targ_data_map.m 2-24
model_target_rtw 2-25
model_types.h 2-22
modelsources.txt 2-24

O
optimizations

expression folding 3-36
signal storage reuse 3-34

out-of-environment error message 1-12

P
parameters

setting correctly 3-5
pilot G Force plot 3-18
project

documenting 3-67
project directory 2-25

working with 3-65

R
rapid simulations 1-4
Real-Time Workshop

capabilities and benefits 1-4
components and features 1-3
demos 1-15
extensible make process 1-6
features 1-7
installing 1-11
integration with Simulink 1-5
integration with Stateflow 1-6
model debugging support 1-5
products supported by 1-16

report 3-38
software development with 1-7
third-party compilers

configuration 1-13
support 1-12

typical workflow 2-2
Real-Time Workshop Report 3-38
Report Generator

opening 3-69
setting component options for 3-72
setting report output options for 3-70
specifying models and subsystems with 3-72

report output options 3-70
reports

generating code generation 3-67
rt_nonfinite.c 2-23
rt_nonfinite.h 2-23
rt_sfcn_helper.c 2-25
rt_sfcn_helper.h 2-25
rtmodel.h 2-23
rtw_proj.tmw 2-23
rtwdemo_f14 GRT code generation tutorial 3-4
rtwdemo_f14 model 3-3
rtwtypes.h 2-23
run-time interface modules 3-33

S
save to workspace options 3-17
Simulink 1-2
Simulink Report Generator

opening 3-69
setting component options for 3-72
setting report output options for 3-70
specifying models and subsystems with 3-72

slprj directory 2-25
Stateflow 1-6
subsystem.c 2-24
subsystem.h 2-24
subsystems

Index-3

Index

converting to referenced models 3-58
treating as atomic units 3-57

symbols options 3-11
system target file 2-17

T
target

how to specify 3-8
Real-Time Workshop support 1-6

target file
block 2-18
system 2-17

Target Language Compiler
function library 2-17
generation of code by 2-17
TLC scripts 2-17

tuning parameters 3-53
tutorials

building generic real-time program 3-4
code generation 3-30
code verification 3-24
data logging 3-16
external mode 3-41
model referencing 3-55

V
variable-step solver 3-5

W
working directory 2-25

Index-4

	toc
	Introduction
	Product Overview
	Introduction
	Components and Features
	Accelerating Your Development Process

	Installing the Real-Time Workshop Software
	Installation Requirements
	Supported Third-Party Compilers
	Compiler Optimization Settings
	Out-of-Environment Error Message

	Troubleshooting Third-Party Windows Compiler Configurations
	LCC
	Microsoft Visual C or Microsoft ® Visual C++
	Watcom

	Real-Time Workshop Demos
	MathWorks Products Supported by the Real-Time Workshop Software
	Help and Documentation
	Prerequisites
	Online Documentation
	For Further Information

	Building an Application
	Real-Time Workshop Workflow
	Workflow Overview
	Mapping Application Requirements to Configuration Options
	Adjusting Configuration Settings
	Running Model Advisor
	Generating Code
	Building an Executable Program
	Verifying the Executable Program
	Naming and Saving the Configuration Set
	Adding and Copying Configuration Sets

	Documenting the Project

	Automatic Program Building
	Build Process
	Build Process Steps
	Model Compilation
	Code Generation
	Customized Makefile Generation
	Executable Program Generation
	Files and Directories Created by the Build Process
	Files Created During Build Process
	Directories Used During the Build Process

	Working with the Real-Time Workshop Software
	Demonstration Model: rtwdemo_f14
	Building a Generic Real-Time Program
	Tutorial Overview
	Working and Build Directories
	Setting Program Parameters
	Selecting the Target Configuration
	Building and Running the Program
	Contents of the Build Directory

	Data Logging
	Tutorial Overview
	Data Logging During Simulation
	Data Logging from Generated Code

	Code Verification
	Tutorial Overview
	Logging Signals via Scope Blocks
	Logging Simulation Data
	Logging Data from the Generated Program
	Comparing Numerical Results of the Simulation and the Generated

	First Look at Generated Code
	Tutorial Overview
	Setting Up the Model
	Generating Code Without Buffer Optimization
	Generating Code with Buffer Optimization
	Further Optimization: Expression Folding
	HTML Code Generation Reports

	Working with External Mode Using GRT
	Tutorial Overview
	Setting Up the Model
	Building the Target Executable
	Running the External Mode Target Program
	Tuning Parameters

	Generating Code for a Referenced Model
	Tutorial Overview
	Creating and Configuring a Subsystem Within the vdp Model
	Converting the Model to Use Model Referencing
	Extracting the Subsystem to a Referenced Model
	Files Created and Changed by the Converter
	Running the Converted Model

	Generating Model Reference Code for a GRT Target
	Working with Project Directories

	Documenting a Code Generation Project
	Tutorial Overview
	Generating Code for the Model
	Opening Report Generator
	Setting Report Output Options
	Specifying Models and Subsystems to Include in a Report
	Setting Component Options
	Generating the Report
	Reviewing the Generated Report

	Glossary
	Index

